Python 搭建深度学习的开发环境

2021-09-03 11:47:21 浏览数 (2840)

深度学习获得了很多关注,因为它特别擅长某种对实际应用非常有用的学习类型。运行一些简单的例子是开始学习这项技术的好方法。设置开发环境是第一步。

有多种方法可以为深度学习设置环境。你可以在 Windows、Mac OS 或 Linux 上执行此操作。我强烈建议在 Mac OS 或 Linux 上进行开发,因为这个领域的大多数人都使用 Linux 或 Mac OS。

1.安装 Anaconda

可以在官方网站上找到安装 Anaconda 的更新指南。网址是:https : //docs.continuum.io/anaconda/install/linux.html

2. 创建虚拟环境

Python语言有2.6、2.7、3.7等多个版本。很多时候,开源项目依赖于不同的语言和包版本。很容易搞乱开发环境。处理这种情况的正确方法是根据相同的包和版本为项目创建一个单独的虚拟环境。在虚拟环境下安装的所有东西只会影响该环境,但不会影响其他任何东西。本质上,虚拟环境是一个独立的目录。

创建一个名为“p3”的虚拟环境,指定Python语言版本为3.7。

conda create -n p3 python=3.7 

激活新创建的虚拟环境“p3”。

source activate p3

安装常用的机器学习包。

pip install numpy
pip install pandas
pip install scikit-learn
pip install seaborn

安装深度学习包

pip install tensorflow
pip install keras

你还可以停用虚拟环境。

source deactivate p3

3. 安装 PyCharm

在此处下载社区版本:https : //www.jetbrains.com/pycharm/download/#section=linux

将其复制到 /opt/ 目录。

sudo cp pycharm-community-2017.1.4.tar.gz /opt/

解压缩文件。

cd /opt/
tar -xzvf pycharm-community-2017.1.4.tar.gz

运行脚本开始。

. /opt/pycharm-community-2017.1.4/bin/pycharm.sh

现在,你就可以进行深度学习来发现自己觉得有趣的东西。