codecamp

Pandas 数据结构简介

本节介绍 Pandas 基础数据结构,包括各类对象的数据类型、索引、轴标记、对齐等基础操作。首先,导入 NumPy 和 Pandas:

In [1]: import numpy as np

In [2]: import pandas as pd

“数据对齐是内在的”,这一原则是根本。除非显式指定,Pandas 不会断开标签和数据之间的连接。

下文先简单介绍数据结构,然后再分门别类介绍每种功能与方法。

#Series

Series 是带标签的一维数组,可存储整数、浮点数、字符串、Python 对象等类型的数据。轴标签统称为索引。调用 pd.Series 函数即可创建 Series:

>>> s = pd.Series(data, index=index)

上述代码中,data 支持以下数据类型:

  • Python 字典
  • 多维数组
  • 标量值(如,5)

index 是轴标签列表。不同数据可分为以下几种情况:

多维数组

data 是多维数组时,index 长度必须与 data 长度一致。没有指定 index 参数时,创建数值型索引,即 [0, ..., len(data) - 1]。

In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [4]: s
Out[4]: 
a    0.469112
b   -0.282863
c   -1.509059
d   -1.135632
e    1.212112
dtype: float64

In [5]: s.index
Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [6]: pd.Series(np.random.randn(5))
Out[6]: 
0   -0.173215
1    0.119209
2   -1.044236
3   -0.861849
4   -2.104569
dtype: float64
注意
Pandas 的索引值可以重复。不支持重复索引值的操作会触发异常。其原因主要与性能有关,有很多计算实例,比如 GroupBy 操作就不用索引。

字典

Series 可以用字典实例化:

In [7]: d = {'b': 1, 'a': 0, 'c': 2}

In [8]: pd.Series(d)
Out[8]: 
b    1
a    0
c    2
dtype: int64
注意
data 为字典,且未设置 index 参数时,如果 Python 版本 >= 3.6 且 Pandas 版本 >= 0.23,Series 按字典的插入顺序排序索引。

Python < 3.6 或 Pandas < 0.23,且未设置 index 参数时,Series 按字母顺序排序字典的键(key)列表。

上例中,如果 Python < 3.6 或 Pandas < 0.23,Series 按字母排序字典的键。输出结果不是 ['b', 'a', 'c'],而是 ['a', 'b', 'c']。

如果设置了 index 参数,则按索引标签提取 data 里对应的值。

In [9]: d = {'a': 0., 'b': 1., 'c': 2.}

In [10]: pd.Series(d)
Out[10]: 
a    0.0
b    1.0
c    2.0
dtype: float64

In [11]: pd.Series(d, index=['b', 'c', 'd', 'a'])
Out[11]: 
b    1.0
c    2.0
d    NaN
a    0.0
dtype: float64
注意
Pandas 用 NaN(Not a Number)表示缺失数据。

标量值

data 是标量值时,必须提供索引。Series 按索引长度重复该标量值。

In [12]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[12]: 
a    5.0
b    5.0
c    5.0
d    5.0
e    5.0
dtype: float64

#Series 类似多维数组

Series 操作与 ndarray 类似,支持大多数 NumPy 函数,还支持索引切片。

In [13]: s[0]
Out[13]: 0.4691122999071863

In [14]: s[:3]
Out[14]: 
a    0.469112
b   -0.282863
c   -1.509059
dtype: float64

In [15]: s[s > s.median()]
Out[15]: 
a    0.469112
e    1.212112
dtype: float64

In [16]: s[[4, 3, 1]]
Out[16]: 
e    1.212112
d   -1.135632
b   -0.282863
dtype: float64

In [17]: np.exp(s)
Out[17]: 
a    1.598575
b    0.753623
c    0.221118
d    0.321219
e    3.360575
dtype: float64
注意
索引与选择数据一节介绍了 s[[4, 3, 1]] 等数组索引操作。

和 NumPy 数组一样,Series 也支持 dtype。

In [18]: s.dtype
Out[18]: dtype('float64')

Series 的数据类型一般是 NumPy 数据类型。不过,Pandas 和第三方库在一些方面扩展了 NumPy 类型系统,即扩展数据类型。比如,Pandas 的类别型数据与可空整数数据类型。更多信息,请参阅数据类型 。

Series.array 用于提取 Series 数组。

In [19]: s.array
Out[19]: 
<PandasArray>
[ 0.4691122999071863, -0.2828633443286633, -1.5090585031735124,
 -1.1356323710171934,  1.2121120250208506]
Length: 5, dtype: float64

执行不用索引的操作时,如禁用自动对齐,访问数组非常有用。

Series.array 一般是扩展数组。简单说,扩展数组是把 N 个 numpy.ndarray 包在一起的打包器。Pandas 知道怎么把扩展数组存储到 Series 或 DataFrame 的列里。更多信息,请参阅数据类型。

Series 只是类似于多维数组,提取真正的多维数组,要用 Series.to_numpy()。

In [20]: s.to_numpy()
Out[20]: array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121])

Series 是扩展数组 ,Series.to_numpy() 返回的是 NumPy 多维数组。

#Series 类似字典

Series 类似固定大小的字典,可以用索引标签提取值或设置值:

In [21]: s['a']
Out[21]: 0.4691122999071863

In [22]: s['e'] = 12.

In [23]: s
Out[23]: 
a     0.469112
b    -0.282863
c    -1.509059
d    -1.135632
e    12.000000
dtype: float64

In [24]: 'e' in s
Out[24]: True

In [25]: 'f' in s
Out[25]: False

引用 Series 里没有的标签会触发异常:

>>> s['f']
KeyError: 'f'

get 方法可以提取 Series 里没有的标签,返回 None 或指定默认值:

In [26]: s.get('f')

In [27]: s.get('f', np.nan)
Out[27]: nan

更多信息,请参阅属性访问。

#矢量操作与对齐 Series 标签

Series 和 NumPy 数组一样,都不用循环每个值,而且 Series 支持大多数 NumPy 多维数组的方法。

In [28]: s + s
Out[28]: 
a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64

In [29]: s * 2
Out[29]: 
a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64

In [30]: np.exp(s)
Out[30]: 
a         1.598575
b         0.753623
c         0.221118
d         0.321219
e    162754.791419
dtype: float64

Series 和多维数组的主要区别在于, Series 之间的操作会自动基于标签对齐数据。因此,不用顾及执行计算操作的 Series 是否有相同的标签。

In [31]: s[1:] + s[:-1]
Out[31]: 
a         NaN
b   -0.565727
c   -3.018117
d   -2.271265
e         NaN
dtype: float64

操作未对齐索引的 Series, 其计算结果是所有涉及索引的并集。如果在 Series 里找不到标签,运算结果标记为 NaN,即缺失值。编写无需显式对齐数据的代码,给交互数据分析和研究提供了巨大的自由度和灵活性。Pandas 数据结构集成的数据对齐功能,是 Pandas 区别于大多数标签型数据处理工具的重要特性。

注意

总之,让不同索引对象操作的默认结果生成索引并集,是为了避免信息丢失。就算缺失了数据,索引标签依然包含计算的重要信息。当然,也可以用**dropna** 函数清除含有缺失值的标签。

#名称属性

Series 支持 name 属性:

In [32]: s = pd.Series(np.random.randn(5), name='something')

In [33]: s
Out[33]: 
0   -0.494929
1    1.071804
2    0.721555
3   -0.706771
4   -1.039575
Name: something, dtype: float64

In [34]: s.name
Out[34]: 'something'

一般情况下,Series 自动分配 name,特别是提取一维 DataFrame 切片时,详见下文。

0.18.0 版新增。

pandas.Series.rename() 方法用于重命名 Series 。

In [35]: s2 = s.rename("different")

In [36]: s2.name
Out[36]: 'different'

注意,s 与 s2 指向不同的对象。

#DataFrame

DataFrame 是由多种类型的列构成的二维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典。DataFrame 是最常用的 Pandas 对象,与 Series 一样,DataFrame 支持多种类型的输入数据:

  • 一维 ndarray、列表、字典、Series 字典
  • 二维 numpy.ndarray
  • 结构多维数组或记录多维数组
  • Series
  • DataFrame

除了数据,还可以有选择地传递 index(行标签)和 columns(列标签)参数。传递了索引或列,就可以确保生成的 DataFrame 里包含索引或列。Series 字典加上指定索引时,会丢弃与传递的索引不匹配的所有数据。

没有传递轴标签时,按常规依据输入数据进行构建。

注意

Python > = 3.6,且 Pandas > = 0.23,数据是字典,且未指定 columns 参数时,DataFrame 的列按字典的插入顺序排序。

Python < 3.6 或 Pandas < 0.23,且未指定 columns 参数时,DataFrame 的列按字典键的字母排序。

#用 Series 字典或字典生成 DataFrame

生成的索引是每个 Series 索引的并集。先把嵌套字典转换为 Series。如果没有指定列,DataFrame 的列就是字典键的有序列表。

In [37]: d = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
   ....:      'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
   ....: 

In [38]: df = pd.DataFrame(d)

In [39]: df
Out[39]: 
   one  two
a  1.0  1.0
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0

In [40]: pd.DataFrame(d, index=['d', 'b', 'a'])
Out[40]: 
   one  two
d  NaN  4.0
b  2.0  2.0
a  1.0  1.0

In [41]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[41]: 
   two three
d  4.0   NaN
b  2.0   NaN
a  1.0   NaN

index 和 columns 属性分别用于访问行、列标签:

注意
指定列与数据字典一起传递时,传递的列会覆盖字典的键。
In [42]: df.index
Out[42]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [43]: df.columns
Out[43]: Index(['one', 'two'], dtype='object')

#用多维数组字典、列表字典生成 DataFrame

多维数组的长度必须相同。如果传递了索引参数,index 的长度必须与数组一致。如果没有传递索引参数,生成的结果是 range(n),n 为数组长度。

In [44]: d = {'one': [1., 2., 3., 4.],
   ....:      'two': [4., 3., 2., 1.]}
   ....: 

In [45]: pd.DataFrame(d)
Out[45]: 
   one  two
0  1.0  4.0
1  2.0  3.0
2  3.0  2.0
3  4.0  1.0

In [46]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[46]: 
   one  two
a  1.0  4.0
b  2.0  3.0
c  3.0  2.0
d  4.0  1.0

#用结构多维数组或记录多维数组生成 DataFrame

本例与数组字典的操作方式相同。

In [47]: data = np.zeros((2, ), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')])

In [48]: data[:] = [(1, 2., 'Hello'), (2, 3., "World")]

In [49]: pd.DataFrame(data)
Out[49]: 
   A    B         C
0  1  2.0  b'Hello'
1  2  3.0  b'World'

In [50]: pd.DataFrame(data, index=['first', 'second'])
Out[50]: 
        A    B         C
first   1  2.0  b'Hello'
second  2  3.0  b'World'

In [51]: pd.DataFrame(data, columns=['C', 'A', 'B'])
Out[51]: 
          C  A    B
0  b'Hello'  1  2.0
1  b'World'  2  3.0

注意

DataFrame 的运作方式与 NumPy 二维数组不同。

#用列表字典生成 DataFrame

In [52]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [53]: pd.DataFrame(data2)
Out[53]: 
   a   b     c
0  1   2   NaN
1  5  10  20.0

In [54]: pd.DataFrame(data2, index=['first', 'second'])
Out[54]: 
        a   b     c
first   1   2   NaN
second  5  10  20.0

In [55]: pd.DataFrame(data2, columns=['a', 'b'])
Out[55]: 
   a   b
0  1   2
1  5  10

#用元组字典生成 DataFrame

元组字典可以自动创建多层索引 DataFrame。

In [56]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
   ....:               ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
   ....:               ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
   ....:               ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
   ....:               ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
   ....: 
Out[56]: 
       a              b      
       b    a    c    a     b
A B  1.0  4.0  5.0  8.0  10.0
  C  2.0  3.0  6.0  7.0   NaN
  D  NaN  NaN  NaN  NaN   9.0

#用 Series 创建 DataFrame

生成的 DataFrame 继承了输入的 Series 的索引,如果没有指定列名,默认列名是输入 Series 的名称。

缺失数据

更多内容,详见缺失数据 。DataFrame 里的缺失值用 np.nan 表示。DataFrame 构建器以 numpy.MaskedArray 为参数时 ,被屏蔽的条目为缺失数据。

#备选构建器

DataFrame.from_dict

DataFrame.from_dict 接收字典组成的字典或数组序列字典,并生成 DataFrame。除了 orient 参数默认为 columns,本构建器的操作与 DataFrame 构建器类似。把 orient 参数设置为 'index', 即可把字典的键作为行标签。

In [57]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]))
Out[57]: 
   A  B
0  1  4
1  2  5
2  3  6

orient='index' 时,键是行标签。本例还传递了列名:

In [58]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]),
   ....:                        orient='index', columns=['one', 'two', 'three'])
   ....: 
Out[58]: 
   one  two  three
A    1    2      3
B    4    5      6

DataFrame.from_records

DataFrame.from_records 构建器支持元组列表或结构数据类型(dtype)的多维数组。本构建器与 DataFrame 构建器类似,只不过生成的 DataFrame 索引是结构数据类型指定的字段。例如:

In [59]: data
Out[59]: 
array([(1, 2., b'Hello'), (2, 3., b'World')],
      dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])

In [60]: pd.DataFrame.from_records(data, index='C')
Out[60]: 
          A    B
C               
b'Hello'  1  2.0
b'World'  2  3.0

#提取、添加、删除列

DataFrame 就像带索引的 Series 字典,提取、设置、删除列的操作与字典类似:

In [61]: df['one']
Out[61]: 
a    1.0
b    2.0
c    3.0
d    NaN
Name: one, dtype: float64

In [62]: df['three'] = df['one'] * df['two']

In [63]: df['flag'] = df['one'] > 2

In [64]: df
Out[64]: 
   one  two  three   flag
a  1.0  1.0    1.0  False
b  2.0  2.0    4.0  False
c  3.0  3.0    9.0   True
d  NaN  4.0    NaN  False

删除(del、pop)列的方式也与字典类似:

In [65]: del df['two']

In [66]: three = df.pop('three')

In [67]: df
Out[67]: 
   one   flag
a  1.0  False
b  2.0  False
c  3.0   True
d  NaN  False

标量值以广播的方式填充列:

In [68]: df['foo'] = 'bar'

In [69]: df
Out[69]: 
   one   flag  foo
a  1.0  False  bar
b  2.0  False  bar
c  3.0   True  bar
d  NaN  False  bar

插入与 DataFrame 索引不同的 Series 时,以 DataFrame 的索引为准:

In [70]: df['one_trunc'] = df['one'][:2]

In [71]: df
Out[71]: 
   one   flag  foo  one_trunc
a  1.0  False  bar        1.0
b  2.0  False  bar        2.0
c  3.0   True  bar        NaN
d  NaN  False  bar        NaN

可以插入原生多维数组,但长度必须与 DataFrame 索引长度一致。

默认在 DataFrame 尾部插入列。insert 函数可以指定插入列的位置:

In [72]: df.insert(1, 'bar', df['one'])

In [73]: df
Out[73]: 
   one  bar   flag  foo  one_trunc
a  1.0  1.0  False  bar        1.0
b  2.0  2.0  False  bar        2.0
c  3.0  3.0   True  bar        NaN
d  NaN  NaN  False  bar        NaN

#用方法链分配新列

受 dplyr 的 mutate 启发,DataFrame 提供了 assign() 方法,可以利用现有的列创建新列。

In [74]: iris = pd.read_csv('data/iris.data')

In [75]: iris.head()
Out[75]: 
   SepalLength  SepalWidth  PetalLength  PetalWidth         Name
0          5.1         3.5          1.4         0.2  Iris-setosa
1          4.9         3.0          1.4         0.2  Iris-setosa
2          4.7         3.2          1.3         0.2  Iris-setosa
3          4.6         3.1          1.5         0.2  Iris-setosa
4          5.0         3.6          1.4         0.2  Iris-setosa

In [76]: (iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength'])
   ....:      .head())
   ....: 
Out[76]: 
   SepalLength  SepalWidth  PetalLength  PetalWidth         Name  sepal_ratio
0          5.1         3.5          1.4         0.2  Iris-setosa     0.686275
1          4.9         3.0          1.4         0.2  Iris-setosa     0.612245
2          4.7         3.2          1.3         0.2  Iris-setosa     0.680851
3          4.6         3.1          1.5         0.2  Iris-setosa     0.673913
4          5.0         3.6          1.4         0.2  Iris-setosa     0.720000

上例中,插入了一个预计算的值。还可以传递带参数的函数,在 assign 的 DataFrame 上求值。

In [77]: iris.assign(sepal_ratio=lambda x: (x['SepalWidth'] / x['SepalLength'])).head()
Out[77]: 
   SepalLength  SepalWidth  PetalLength  PetalWidth         Name  sepal_ratio
0          5.1         3.5          1.4         0.2  Iris-setosa     0.686275
1          4.9         3.0          1.4         0.2  Iris-setosa     0.612245
2          4.7         3.2          1.3         0.2  Iris-setosa     0.680851
3          4.6         3.1          1.5         0.2  Iris-setosa     0.673913
4          5.0         3.6          1.4         0.2  Iris-setosa     0.720000

assign 返回的都是数据副本,原 DataFrame 不变。

未引用 DataFrame 时,传递可调用的,不是实际要插入的值。这种方式常见于在操作链中调用 assign 的操作。例如,将 DataFrame 限制为花萼长度大于 5 的观察值,计算比例,再制图:

In [78]: (iris.query('SepalLength > 5')
   ....:      .assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength,
   ....:              PetalRatio=lambda x: x.PetalWidth / x.PetalLength)
   ....:      .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
   ....: 
Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66075a7978>

上例用 assign 把函数传递给 DataFrame, 并执行函数运算。这是要注意的是,该 DataFrame 是筛选了花萼长度大于 5 以后的数据。首先执行的是筛选操作,再计算比例。这个例子就是对没有事先筛选 DataFrame 进行的引用。

assign 函数签名就是 **kwargs。键是新字段的列名,值为是插入值(例如,Series 或 NumPy 数组),或把 DataFrame 当做调用参数的函数。返回结果是插入新值的 DataFrame 副本。

0.23.0 版新增。

从 3.6 版开始,Python 可以保存 **kwargs 顺序。这种操作允许依赖赋值,**kwargs 后的表达式,可以引用同一个 assign() 函数里之前创建的列 。

In [79]: dfa = pd.DataFrame({"A": [1, 2, 3],
   ....:                     "B": [4, 5, 6]})
   ....: 

In [80]: dfa.assign(C=lambda x: x['A'] + x['B'],
   ....:            D=lambda x: x['A'] + x['C'])
   ....: 
Out[80]: 
   A  B  C   D
0  1  4  5   6
1  2  5  7   9
2  3  6  9  12

第二个表达式里,x['C'] 引用刚创建的列,与 dfa['A'] + dfa['B'] 等效。

要兼容所有 Python 版本,可以把 assign 操作分为两部分。

In [81]: dependent = pd.DataFrame({"A": [1, 1, 1]})

In [82]: (dependent.assign(A=lambda x: x['A'] + 1)
   ....:           .assign(B=lambda x: x['A'] + 2))
   ....: 
Out[82]: 
   A  B
0  2  4
1  2  4
2  2  4

警告

依赖赋值改变了 Python 3.6 及之后版本与 Python 3.6 之前版本的代码操作方式。

要想编写支持 3.6 之前或之后版本的 Python 代码,传递 assign 表达式时,要注意以下两点:

  • 更新现有的列
  • 在同一个 assign 引用刚建立的更新列

示例如下,更新列 “A”,然后,在创建 “B” 列时引用该列。

>>> dependent = pd.DataFrame({"A": [1, 1, 1]})
>>> dependent.assign(A=lambda x: x["A"] + 1, B=lambda x: x["A"] + 2)

Python 3.5 或更早版本的表达式在创建 B 列时引用的是 A 列的“旧”值 [1, 1, 1]。输出是:

A  B
0  2  3
1  2  3
2  2  3

Python >= 3.6 的表达式创建 A 列时,引用的是 A 列的“”新”值,[2, 2, 2],输出是:

A  B
0  2  4
1  2  4
2  2  4

#索引 / 选择

索引基础用法如下:

操作 句法 结果
选择列 df[col] Series
用标签选择行 df.loc[label] Series
用整数位置选择行 df.iloc[loc] Series
行切片 df[5:10] DataFrame
用布尔向量选择行 df[bool_vec] DataFrame

选择行返回 Series,索引是 DataFrame 的列:

In [83]: df.loc['b']
Out[83]: 
one              2
bar              2
flag         False
foo            bar
one_trunc        2
Name: b, dtype: object

In [84]: df.iloc[2]
Out[84]: 
one             3
bar             3
flag         True
foo           bar
one_trunc     NaN
Name: c, dtype: object

高级索引、切片技巧,请参阅索引。重建索引介绍重建索引 / 遵循新标签集的基础知识。

#数据对齐和运算

DataFrame 对象可以自动对齐**列与索引(行标签)**的数据。与上文一样,生成的结果是列和行标签的并集。

In [85]: df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])

In [86]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])

In [87]: df + df2
Out[87]: 
          A         B         C   D
0  0.045691 -0.014138  1.380871 NaN
1 -0.955398 -1.501007  0.037181 NaN
2 -0.662690  1.534833 -0.859691 NaN
3 -2.452949  1.237274 -0.133712 NaN
4  1.414490  1.951676 -2.320422 NaN
5 -0.494922 -1.649727 -1.084601 NaN
6 -1.047551 -0.748572 -0.805479 NaN
7       NaN       NaN       NaN NaN
8       NaN       NaN       NaN NaN
9       NaN       NaN       NaN NaN

DataFrame 和 Series 之间执行操作时,默认操作是在 DataFrame 的列上对齐 Series 的索引,按行执行广播操作。例如:

In [88]: df - df.iloc[0]
Out[88]: 
          A         B         C         D
0  0.000000  0.000000  0.000000  0.000000
1 -1.359261 -0.248717 -0.453372 -1.754659
2  0.253128  0.829678  0.010026 -1.991234
3 -1.311128  0.054325 -1.724913 -1.620544
4  0.573025  1.500742 -0.676070  1.367331
5 -1.741248  0.781993 -1.241620 -2.053136
6 -1.240774 -0.869551 -0.153282  0.000430
7 -0.743894  0.411013 -0.929563 -0.282386
8 -1.194921  1.320690  0.238224 -1.482644
9  2.293786  1.856228  0.773289 -1.446531

时间序列是特例,DataFrame 索引包含日期时,按列广播:

In [89]: index = pd.date_range('1/1/2000', periods=8)

In [90]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))

In [91]: df
Out[91]: 
                   A         B         C
2000-01-01 -1.226825  0.769804 -1.281247
2000-01-02 -0.727707 -0.121306 -0.097883
2000-01-03  0.695775  0.341734  0.959726
2000-01-04 -1.110336 -0.619976  0.149748
2000-01-05 -0.732339  0.687738  0.176444
2000-01-06  0.403310 -0.154951  0.301624
2000-01-07 -2.179861 -1.369849 -0.954208
2000-01-08  1.462696 -1.743161 -0.826591

In [92]: type(df['A'])
Out[92]: Pandas.core.series.Series

In [93]: df - df['A']
Out[93]: 
            2000-01-01 00:00:00  2000-01-02 00:00:00  2000-01-03 00:00:00  2000-01-04 00:00:00  ...  2000-01-08 00:00:00   A   B   C
2000-01-01                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-02                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-03                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-04                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-05                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-06                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-07                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN
2000-01-08                  NaN                  NaN                  NaN                  NaN  ...                  NaN NaN NaN NaN

[8 rows x 11 columns]

警告

df - df['A']

已弃用,后期版本中会删除。实现此操作的首选方法是:

df.sub(df['A'], axis=0)

有关匹配和广播操作的显式控制,请参阅二进制操作。

标量操作与其它数据结构一样:

In [94]: df * 5 + 2
Out[94]: 
                   A         B         C
2000-01-01 -4.134126  5.849018 -4.406237
2000-01-02 -1.638535  1.393469  1.510587
2000-01-03  5.478873  3.708672  6.798628
2000-01-04 -3.551681 -1.099880  2.748742
2000-01-05 -1.661697  5.438692  2.882222
2000-01-06  4.016548  1.225246  3.508122
2000-01-07 -8.899303 -4.849247 -2.771039
2000-01-08  9.313480 -6.715805 -2.132955

In [95]: 1 / df
Out[95]: 
                   A         B          C
2000-01-01 -0.815112  1.299033  -0.780489
2000-01-02 -1.374179 -8.243600 -10.216313
2000-01-03  1.437247  2.926250   1.041965
2000-01-04 -0.900628 -1.612966   6.677871
2000-01-05 -1.365487  1.454041   5.667510
2000-01-06  2.479485 -6.453662   3.315381
2000-01-07 -0.458745 -0.730007  -1.047990
2000-01-08  0.683669 -0.573671  -1.209788

In [96]: df ** 4
Out[96]: 
                    A         B         C
2000-01-01   2.265327  0.351172  2.694833
2000-01-02   0.280431  0.000217  0.000092
2000-01-03   0.234355  0.013638  0.848376
2000-01-04   1.519910  0.147740  0.000503
2000-01-05   0.287640  0.223714  0.000969
2000-01-06   0.026458  0.000576  0.008277
2000-01-07  22.579530  3.521204  0.829033
2000-01-08   4.577374  9.233151  0.466834

支持布尔运算符:

In [97]: df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1]}, dtype=bool)

In [98]: df2 = pd.DataFrame({'a': [0, 1, 1], 'b': [1, 1, 0]}, dtype=bool)

In [99]: df1 & df2
Out[99]: 
       a      b
0  False  False
1  False   True
2   True  False

In [100]: df1 | df2
Out[100]: 
      a     b
0  True  True
1  True  True
2  True  True

In [101]: df1 ^ df2
Out[101]: 
       a      b
0   True   True
1   True  False
2  False   True

In [102]: -df1
Out[102]: 
       a      b
0  False   True
1   True  False
2  False  False

#转置

类似于多维数组,T 属性(即 transpose 函数)可以转置 DataFrame:

# only show the first 5 rows
In [103]: df[:5].T
Out[103]: 
   2000-01-01  2000-01-02  2000-01-03  2000-01-04  2000-01-05
A   -1.226825   -0.727707    0.695775   -1.110336   -0.732339
B    0.769804   -0.121306    0.341734   -0.619976    0.687738
C   -1.281247   -0.097883    0.959726    0.149748    0.176444

#DataFrame 应用 NumPy 函数

Series 与 DataFrame 可使用 log、exp、sqrt 等多种元素级 NumPy 通用函数(ufunc) ,假设 DataFrame 的数据都是数字:

In [104]: np.exp(df)
Out[104]: 
                   A         B         C
2000-01-01  0.293222  2.159342  0.277691
2000-01-02  0.483015  0.885763  0.906755
2000-01-03  2.005262  1.407386  2.610980
2000-01-04  0.329448  0.537957  1.161542
2000-01-05  0.480783  1.989212  1.192968
2000-01-06  1.496770  0.856457  1.352053
2000-01-07  0.113057  0.254145  0.385117
2000-01-08  4.317584  0.174966  0.437538

In [105]: np.asarray(df)
Out[105]: 
array([[-1.2268,  0.7698, -1.2812],
       [-0.7277, -0.1213, -0.0979],
       [ 0.6958,  0.3417,  0.9597],
       [-1.1103, -0.62  ,  0.1497],
       [-0.7323,  0.6877,  0.1764],
       [ 0.4033, -0.155 ,  0.3016],
       [-2.1799, -1.3698, -0.9542],
       [ 1.4627, -1.7432, -0.8266]])

DataFrame 不是多维数组的替代品,它的索引语义和数据模型与多维数组都不同。

Series 应用 __array_ufunc__,支持 NumPy 通用函数。

通用函数应用于 Series 的底层数组。

In [106]: ser = pd.Series([1, 2, 3, 4])

In [107]: np.exp(ser)
Out[107]: 
0     2.718282
1     7.389056
2    20.085537
3    54.598150
dtype: float64

0.25.0 版更改: 多个 Series 传递给 ufunc 时,会先进行对齐。

Pandas 可以自动对齐 ufunc 里的多个带标签输入数据。例如,两个标签排序不同的 Series 运算前,会先对齐标签。

In [108]: ser1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

In [109]: ser2 = pd.Series([1, 3, 5], index=['b', 'a', 'c'])

In [110]: ser1
Out[110]: 
a    1
b    2
c    3
dtype: int64

In [111]: ser2
Out[111]: 
b    1
a    3
c    5
dtype: int64

In [112]: np.remainder(ser1, ser2)
Out[112]: 
a    1
b    0
c    3
dtype: int64

一般来说,Pandas 提取两个索引的并集,不重叠的值用缺失值填充。

In [113]: ser3 = pd.Series([2, 4, 6], index=['b', 'c', 'd'])

In [114]: ser3
Out[114]: 
b    2
c    4
d    6
dtype: int64

In [115]: np.remainder(ser1, ser3)
Out[115]: 
a    NaN
b    0.0
c    3.0
d    NaN
dtype: float64

对 Series 和 Index 应用二进制 ufunc 时,优先执行 Series,并返回的结果也是 Series 。

In [116]: ser = pd.Series([1, 2, 3])

In [117]: idx = pd.Index([4, 5, 6])

In [118]: np.maximum(ser, idx)
Out[118]: 
0    4
1    5
2    6
dtype: int64

NumPy 通用函数可以安全地应用于非多维数组支持的 Series,例如,SparseArray(参见稀疏计算)。如有可能,应用 ufunc 而不把基础数据转换为多维数组。

#控制台显示

控制台显示大型 DataFrame 时,会根据空间调整显示大小。info()函数可以查看 DataFrame 的信息摘要。下列代码读取 R 语言 plyr 包里的棒球数据集 CSV 文件):

In [119]: baseball = pd.read_csv('data/baseball.csv')

In [120]: print(baseball)
       id     player  year  stint team  lg   g   ab   r    h  X2b  X3b  hr   rbi   sb   cs  bb    so  ibb  hbp   sh   sf  gidp
0   88641  womacto01  2006      2  CHN  NL  19   50   6   14    1    0   1   2.0  1.0  1.0   4   4.0  0.0  0.0  3.0  0.0   0.0
1   88643  schilcu01  2006      1  BOS  AL  31    2   0    1    0    0   0   0.0  0.0  0.0   0   1.0  0.0  0.0  0.0  0.0   0.0
..    ...        ...   ...    ...  ...  ..  ..  ...  ..  ...  ...  ...  ..   ...  ...  ...  ..   ...  ...  ...  ...  ...   ...
98  89533   aloumo01  2007      1  NYN  NL  87  328  51  112   19    1  13  49.0  3.0  0.0  27  30.0  5.0  2.0  0.0  3.0  13.0
99  89534  alomasa02  2007      1  NYN  NL   8   22   1    3    1    0   0   0.0  0.0  0.0   0   3.0  0.0  0.0  0.0  0.0   0.0

[100 rows x 23 columns]

In [121]: baseball.info()
<class 'Pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
id        100 non-null int64
player    100 non-null object
year      100 non-null int64
stint     100 non-null int64
team      100 non-null object
lg        100 non-null object
g         100 non-null int64
ab        100 non-null int64
r         100 non-null int64
h         100 non-null int64
X2b       100 non-null int64
X3b       100 non-null int64
hr        100 non-null int64
rbi       100 non-null float64
sb        100 non-null float64
cs        100 non-null float64
bb        100 non-null int64
so        100 non-null float64
ibb       100 non-null float64
hbp       100 non-null float64
sh        100 non-null float64
sf        100 non-null float64
gidp      100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.1+ KB

尽管 to_string 有时不匹配控制台的宽度,但还是可以用 to_string 以表格形式返回 DataFrame 的字符串表示形式:

In [122]: print(baseball.iloc[-20:, :12].to_string())
       id     player  year  stint team  lg    g   ab   r    h  X2b  X3b
80  89474  finlest01  2007      1  COL  NL   43   94   9   17    3    0
81  89480  embreal01  2007      1  OAK  AL    4    0   0    0    0    0
82  89481  edmonji01  2007      1  SLN  NL  117  365  39   92   15    2
83  89482  easleda01  2007      1  NYN  NL   76  193  24   54    6    0
84  89489  delgaca01  2007      1  NYN  NL  139  538  71  139   30    0
85  89493  cormirh01  2007      1  CIN  NL    6    0   0    0    0    0
86  89494  coninje01  2007      2  NYN  NL   21   41   2    8    2    0
87  89495  coninje01  2007      1  CIN  NL   80  215  23   57   11    1
88  89497  clemero02  2007      1  NYA  AL    2    2   0    1    0    0
89  89498  claytro01  2007      2  BOS  AL    8    6   1    0    0    0
90  89499  claytro01  2007      1  TOR  AL   69  189  23   48   14    0
91  89501  cirilje01  2007      2  ARI  NL   28   40   6    8    4    0
92  89502  cirilje01  2007      1  MIN  AL   50  153  18   40    9    2
93  89521  bondsba01  2007      1  SFN  NL  126  340  75   94   14    0
94  89523  biggicr01  2007      1  HOU  NL  141  517  68  130   31    3
95  89525  benitar01  2007      2  FLO  NL   34    0   0    0    0    0
96  89526  benitar01  2007      1  SFN  NL   19    0   0    0    0    0
97  89530  ausmubr01  2007      1  HOU  NL  117  349  38   82   16    3
98  89533   aloumo01  2007      1  NYN  NL   87  328  51  112   19    1
99  89534  alomasa02  2007      1  NYN  NL    8   22   1    3    1    0

默认情况下,过宽的 DataFrame 会跨多行输出:

In [123]: pd.DataFrame(np.random.randn(3, 12))
Out[123]: 
          0         1         2         3         4         5         6         7         8         9        10        11
0 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871  3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240
1 -2.182937  0.380396  0.084844  0.432390  1.519970 -0.493662  0.600178  0.274230  0.132885 -0.023688  2.410179  1.450520
2  0.206053 -0.251905 -2.213588  1.063327  1.266143  0.299368 -0.863838  0.408204 -1.048089 -0.025747 -0.988387  0.094055

display.width 选项可以更改单行输出的宽度:

In [124]: pd.set_option('display.width', 40)  # 默认值为 80

In [125]: pd.DataFrame(np.random.randn(3, 12))
Out[125]: 
          0         1         2         3         4         5         6         7         8         9        10        11
0  1.262731  1.289997  0.082423 -0.055758  0.536580 -0.489682  0.369374 -0.034571 -2.484478 -0.281461  0.030711  0.109121
1  1.126203 -0.977349  1.474071 -0.064034 -1.282782  0.781836 -1.071357  0.441153  2.353925  0.583787  0.221471 -0.744471
2  0.758527  1.729689 -0.964980 -0.845696 -1.340896  1.846883 -1.328865  1.682706 -1.717693  0.888782  0.228440  0.901805

还可以用 display.max_colwidth 调整最大列宽。

In [126]: datafile = {'filename': ['filename_01', 'filename_02'],
   .....:             'path': ["media/user_name/storage/folder_01/filename_01",
   .....:                      "media/user_name/storage/folder_02/filename_02"]}
   .....: 

In [127]: pd.set_option('display.max_colwidth', 30)

In [128]: pd.DataFrame(datafile)
Out[128]: 
      filename                           path
0  filename_01  media/user_name/storage/fo...
1  filename_02  media/user_name/storage/fo...

In [129]: pd.set_option('display.max_colwidth', 100)

In [130]: pd.DataFrame(datafile)
Out[130]: 
      filename                                           path
0  filename_01  media/user_name/storage/folder_01/filename_01
1  filename_02  media/user_name/storage/folder_02/filename_02

expand_frame_repr 选项可以禁用此功能,在一个区块里输出整个表格。

#DataFrame 列属性访问和 IPython 代码补全

DataFrame 列标签是有效的 Python 变量名时,可以像属性一样访问该列:

In [131]: df = pd.DataFrame({'foo1': np.random.randn(5),
   .....:                    'foo2': np.random.randn(5)})
   .....: 

In [132]: df
Out[132]: 
       foo1      foo2
0  1.171216 -0.858447
1  0.520260  0.306996
2 -1.197071 -0.028665
3 -1.066969  0.384316
4 -0.303421  1.574159

In [133]: df.foo1
Out[133]: 
0    1.171216
1    0.520260
2   -1.197071
3   -1.066969
4   -0.303421
Name: foo1, dtype: float64

IPython 支持补全功能,按 tab 键可以实现代码补全:

In [134]: df.fo<TAB>  # 此时按 tab 键 会显示下列内容
df.foo1  df.foo2


Pandas 基础用法
Pandas 与其他工具比较
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }