四、欧拉定理
欧拉函数的用处,在于[欧拉定理]。"欧拉定理"指的是:
如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:
也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,可以被n整除。比如,3和7互质,而7的欧拉函数φ(7)等于6,所以3的6次方(729)减去1,可以被7整除(728/7=104)。
欧拉定理的证明比较复杂,这里就省略了。我们只要记住它的结论就行了。
欧拉定理可以大大简化某些运算。比如,7和10互质,根据欧拉定理,
已知 φ(10) 等于4,所以马上得到7的4倍数次方的个位数肯定是1。
因此,7的任意次方的个位数(例如7的222次方),心算就可以算出来。
欧拉定理有一个特殊情况。
假设正整数a与质数p互质,因为质数p的φ(p)等于p-1,则欧拉定理可以写成
这就是著名的费马小定理。它是欧拉定理的特例。
欧拉定理是RSA算法的核心。理解了这个定理,就可以理解RSA。