codecamp

Keras 介绍

深度学习是机器学习的主要子领域之一。

机器学习是对算法设计的研究,其灵感来自于人脑模型。深度学习在机器人、人工智能(AI)、音频和视频识别和图像识别等数据科学领域变得越来越流行。

人工神经网络是深度学习方法论的核心。深度学习得到了Theano、TensorFlow、Caffe、Mxnet等各种库的支持。

Keras 是最强大且易于使用的 Python 库之一,建立在流行的深度学习库(如 TensorFlow、Theano等)之上,用于创建深度学习模型。

概述

Keras 运行在开源机器库之上,例如 TensorFlow、Theano 或 Cognitive Toolkit(CNTK)。

  • Theano 是一个用于快速数值计算任务的 Python 库。
  • TensorFlow 是最著名的符号数学库,用于创建神经网络和深度学习模型。TensorFLow 非常灵活,主要优势是分布式计算。
  • CNTK 是微软开发的深度学习框架。它使用 Python、C#、C++ 或独立机器学习工具包等库。

Theano 和 TensorFlow 都是非常强大的库,但是不好理解如何应用于创建神经网络。

Keras 基于最小结构,它提供了一种干净且简单的方法来创建基于 TensorFlow 或 Theano 的深度学习模型。Keras 旨在快速定义深度学习模型。可以说,Keras 是深度学习应用的最佳选择。

特征

Keras 利用各种优化技术使高级神经网络 API 更简单、更高效。它支持以下功能:

  • 一致、简单和可扩展的API。
  • 最小的结构,无需任何装饰即可轻松实现结果。
  • 它支持多个平台和后端。
  • 它是用户友好的框架,可以在 CPU 和 GPU 上运行。
  • 计算的高度可扩展性。

优势

Keras 是非常强大和动态的框架,并具有以下优点:

  • 更大的社区支持。
  • 易于测试。
  • Keras 神经网络是 Python 编写的,这让事情变得更简单。
  • Keras 支持卷积和循环网络。
  • 深度学习模型是离散的组件,因此,你可以组合成多种方式。
Keras 主页
Keras 安装
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }