Keras 使用 ResNet 模型进行实时预测
ResNet是一个预训练模型。它使用 ImageNet 进行训练。在 ImageNet 上预训练的 ResNet 模型权重。它具有以下语法:
keras.applications.resnet.ResNet50 (
include_top = True,
weights = 'imagenet',
input_tensor = None,
input_shape = None,
pooling = None,
classes = 1000
)
include_top
指的是网络顶部的全连接层。weights
指的是ImageNet
上的预训练。input_tensor
指用作模型的图像输入的可选的Keras
张量。input_shape
指可选的形状元组。此模型的默认输入大小为224x224
。clasees
指用于对图像进行分类的可选数量的类。
让我们通过写一个简单的例子来理解模型:
第 1 步:导入模块
加载如下指定的必要模块:
>>> import PIL
>>> from keras.preprocessing.image import load_img
>>> from keras.preprocessing.image import img_to_array
>>> from keras.applications.imagenet_utils import decode_predictions
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from keras.applications.resnet50 import ResNet50
>>> from keras.applications import resnet50
第 2 步:选择一个输入
选择一个输入图像,Lotus,如下所示:
>>> filename = 'banana.jpg'
>>> ## load an image in PIL format
>>> original = load_img(filename, target_size = (224, 224))
>>> print('PIL image size',original.size)
PIL image size (224, 224)
>>> plt.imshow(original)
<matplotlib.image.AxesImage object at 0x1304756d8>
>>> plt.show()
在这里,我们加载了一个图像(banana.jpg
)并显示了它。
第 3 步:将图像转换为 NumPy 数组
将输入的 Banana 转换为 NumPy 数组,以便将其传递到模型中以进行预测。
>>> #convert the PIL image to a numpy array
>>> numpy_image = img_to_array(original)
>>> plt.imshow(np.uint8(numpy_image))
<matplotlib.image.AxesImage object at 0x130475ac8>
>>> print('numpy array size',numpy_image.shape)
numpy array size (224, 224, 3)
>>> # Convert the image / images into batch format
>>> image_batch = np.expand_dims(numpy_image, axis = 0)
>>> print('image batch size', image_batch.shape)
image batch size (1, 224, 224, 3)
>>>
第 4 步:模型预测
将输入输入模型以获得预测
>>> prepare the image for the resnet50 model >>>
>>> processed_image = resnet50.preprocess_input(image_batch.copy())
>>> # create resnet model
>>>resnet_model = resnet50.ResNet50(weights = 'imagenet')
>>> Downloavding data from https://github.com/fchollet/deep-learning-models/releas
es/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5
102858752/102853048 [==============================] - 33s 0us/step
>>> # get the predicted probabilities for each class
>>> predictions = resnet_model.predict(processed_image)
>>> # convert the probabilities to class labels
>>> label = decode_predictions(predictions)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/
data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step
>>> print(label)
输出
[
[
('n07753592', 'banana', 0.99229723),
('n03532672', 'hook', 0.0014551596),
('n03970156', 'plunger', 0.0010738898),
('n07753113', 'fig', 0.0009359837) ,
('n03109150', 'corkscrew', 0.00028538404)
]
]
模型就可以正确地将图像预测为 banana。