排序
排序
本章先简单介绍了插入排序,然后着重讲述快速排序。
插入排序
// 版本1
void InsertSort(int a[], int n) {
for(int i=1; i<n; ++i)
for(int j=i; j>0 && a[j-1]>a[j]; --j)
swap(a[j-1], a[j]);
}
// 版本2
void InsertSort1(int a[], int n) {
for(int i=1; i<n; ++i) {
int t = a[i];
int j = i;
for(; j>0 && a[j-1]>t; --j)
a[j] = a[j-1];
a[j] = t;
}
}
快速排序
我们在这里规定:小于等于pivot的元素移到左边,大于pivot的元素移到右边。
实现1:单向移动版本
这个版本的关键是设置一快一慢两个指针,慢指针左侧都是小于等于pivot(包含慢指针所在位置), 慢指针到快指针之间的值是大于pivot,快指针右侧的值是还未比较过的。示意图如下:
小于等于pivot | 大于pivot | ?
slow fast
快指针一次一步向前走,遇到大于pivot什么也不做继续向前走。遇到小于等于pivot的元素, 则慢指针slow向前走一步,然后交换快慢指针指向的元素。一次划分结束后, 再递归对左右两侧的元素进行快排。代码如下:
// 数组快排
void QSort(int a[], int head, int end) {
if(a==NULL || head==end) return;
int slow = head, fast = head + 1;
int pivot = a[head];
while(fast != end) {
if(a[fast] <= pivot)
swap(a[++slow], a[fast]);
++fast;
}
swap(a[head], a[slow]);
QSort(a, head, slow);
QSort(a, slow+1, end);
}
排序数组a只需要调用QSort(a, 0, n)即可。该思路同样可以很容易地在链表上实现:
// 单链表快排
void qsort(Node *head, Node *end){
if(head==NULL || head==end) return;
Node *slow = head, *fast = head->next;
int pivot = head->data;
while(fast != end){
if(fast->data <= pivot){
slow = slow->next;
swap(slow->data, fast->data);
}
fast = fast->next;
}
swap(head->data, slow->data);
qsort(head, slow);
qsort(slow->next, end);
}
排序头指针为head的单链表只需调用qsort(head, NULL)即可。
实现2:双向移动版本
版本1能能够快速完成对随机整数数组的排序,但如果数组有序, 或是数组中元素相同,快排的时间复杂度会退化成O(n2 ),性能变得非常差。
一种缓解方案是使用双向移动版本的快排,它每次划分也是使用两个指针, 不过一个是从左向右移动,一个是从右向左移动,示意图如下:
小于等于pivot | ? | 大于pivot
i j
指针j不断向左移动,直到遇到小于等于pivot,就交换指针i和j所指元素 (指针i一开始指向pivot);指针i不断向右移动,直到遇到大于pivot的, 就交换指针i和j所指元素。pivot在这个过程中,不断地换来换去, 最终会停在分界线上,分界线左边都是小于等于它的元素,右边都是大于它的元素。 这样就避免了最后还要交换一次pivot的操作,代码也变得美观许多。
int partition(int a[], int low, int high){
int pivot = a[low], i=low, j=high;
while(i < j){
while(i<j && a[j]>pivot) --j;
if(i < j) swap(a[i], a[j]);
while(i<j && a[i]<=pivot) ++i;
if(i < j) swap(a[i], a[j]);
}
return i;
}
void quicksort(int a[], int first, int last){
if(first<last){
int k = partition(a, first, last);
quicksort(a, first, k-1);
quicksort(a, k+1, last);
}
}
当然,如果对于partition函数,你如果觉得大循环内的两个swap还是做了些无用功的话, 也可以把pivot的赋值放到最后一步,而不是在这个过程中swap来swap去的。代码如下:
int partition(int a[], int low, int high){
int pivot = a[low], i=low, j=high;
while(i<j){
while(i<j && a[j]>pivot) --j;
if(i<j) a[i++] = a[j];
while(i<j && a[i]<=pivot) ++i;
if(i<j) a[j--] = a[i];
}
a[i] = pivot;
return i;
}
如果数组基本有序,那随机选择pivot(而不像上面那样选择第一个做为pivot) 会得到更好的性能。在partition函数里,我们只需要在数组中随机选一个元素, 然后将它和数组中第一个元素交换,后面的划分代码无需改变, 就可以达到随机选择pivot的效果。
进一步优化
对于小数组,用插入排序之类的简单方法来排序反而会更快,因此在快排中, 当数组长度小于某个值时,我们就什么也不做。对应到代码中, 就是修改quicksort中的if条件:
if(first < last) 改为 if(last-first > cutoff)
其中cutoff是一个小整数。程序结束时,数组并不是有序的, 而是被组合成一块一块随机排列的值,并且满足这样的条件: 某一块中的元素小于它右边任何块中的元素。我们必须通过另一种排序算法对块内进行排序。 由于数组是几乎有序的,因此插入排序比较适用。
这种方法结合了快排和插入排序,让它们去做各自擅长的事情,往往比单纯用快排要快。
深入阅读:Don Knuth的《The Art of Computer Programming, Volume 3: Sorting and Searching》;Robert Sedgewick的《Algorithms》; 《Algorithms in C》,《Algorithms in C++》,《Algorithms in Java》。