NumPy 索引、切片和迭代
一维数组可以被索引、切片和迭代,就像列表和其他Python 序列一样。
>>> a = np.arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> # equivalent to a[0:6:2] = 1000;
>>> # from start to position 6, exclusive, set every 2nd element to 1000
>>> a[:6:2] = 1000
>>> a
array([1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729])
>>> a[::-1] # reversed a
array([ 729, 512, 343, 216, 125, 1000, 27, 1000, 1, 1000])
>>> for i in a:
... print(i**(1 / 3.))
...
9.999999999999998
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999998
多维数组的每个轴可以有一个索引,这些索引在用逗号分隔的元组中给出:
>>> def f(x, y):
... return 10 * x + y
...
>>> b = np.fromfunction(f, (5, 4), dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2, 3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[:, 1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
当提供的索引少于轴数时,缺失的索引被视为完整切片:
>>> b[-1] # the last row. Equivalent to b[-1, :]
array([40, 41, 42, 43])
括号中的b[i]
表达式被视为i
后跟:
代表其余轴所需的尽可能多的实例。NumPy 还允许您使用点作为 .b[i, ...]
(...
)的点根据需要,以产生一个完整的索引元组表示为许多冒号。例如,如果x
是一个有 5 个轴的数组,则
x[1, 2, ...]
相当于,x[1, 2, :, :, :]
x[..., 3]
到和x[:, :, :, :, 3]
x[4, ..., 5, :]
到。x[4, :, :, 5, :]
>>> c = np.array([[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)
... [ 10, 12, 13]],
... [[100, 101, 102],
... [110, 112, 113]]])
>>> c.shape
(2, 2, 3)
>>> c[1, ...] # same as c[1, :, :] or c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[..., 2] # same as c[:, :, 2]
array([[ 2, 13],
[102, 113]])
迭代多维数组是相对于第一个轴完成的:
>>> for row in b:
... print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
但是,如果要对数组中的每个元素执行操作,可以使用flat
属性,它是数组所有元素的迭代器:
>>> for element in b.flat:
... print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43