codecamp

R语言 数据库

数据是关系数据库系统以规范化格式存储。 因此,要进行统计计算,我们将需要非常先进和复杂的Sql查询。 但R语言可以轻松地连接到许多关系数据库,如MySql,Oracle,Sql服务器等,并从它们获取记录作为数据框。 一旦数据在R语言环境中可用,它就变成正常的R语言数据集,并且可以使用所有强大的包和函数来操作或分析。
在本教程中,我们将使用MySql作为连接到R语言的参考数据库。

RMySQL包

R语言有一个名为“RMySQL”的内置包,它提供与MySql数据库之间的本地连接。 您可以使用以下命令在R语言环境中安装此软件包。

install.packages("RMySQL")

将R连接到MySql

一旦安装了包,我们在R中创建一个连接对象以连接到数据库。 它使用用户名,密码,数据库名称和主机名作为输入。

# Create a connection Object to MySQL database.
# We will connect to the sampel database named "sakila" that comes with MySql installation.
mysqlconnection = dbConnect(MySQL(), user = 'root', password = '', dbname = 'sakila',
   host = 'localhost')

# List the tables available in this database.
 dbListTables(mysqlconnection)

当我们执行上面的代码,它产生以下结果 -

 [1] "actor"                      "actor_info"                
 [3] "address"                    "category"                  
 [5] "city"                       "country"                   
 [7] "customer"                   "customer_list"             
 [9] "film"                       "film_actor"                
[11] "film_category"              "film_list"                 
[13] "film_text"                  "inventory"                 
[15] "language"                   "nicer_but_slower_film_list"
[17] "payment"                    "rental"                    
[19] "sales_by_film_category"     "sales_by_store"            
[21] "staff"                      "staff_list"                
[23] "store"                     

查询表

我们可以使用函数dbSendQuery()查询MySql中的数据库表。 查询在MySql中执行,并使用R语言fetch()函数返回结果集。 最后,它被存储为R语言中的数据帧。

# Query the "actor" tables to get all the rows.
result = dbSendQuery(mysqlconnection, "select * from actor")

# Store the result in a R data frame object. n = 5 is used to fetch first 5 rows.
data.frame = fetch(result, n = 5)
print(data.frame)

当我们执行上面的代码,它产生以下结果 -

        actor_id   first_name    last_name         last_update
1        1         PENELOPE      GUINESS           2006-02-15 04:34:33
2        2         NICK          WAHLBERG          2006-02-15 04:34:33
3        3         ED            CHASE             2006-02-15 04:34:33
4        4         JENNIFER      DAVIS             2006-02-15 04:34:33
5        5         JOHNNY        LOLLOBRIGIDA      2006-02-15 04:34:33

带过滤条件的查询

我们可以传递任何有效的select查询来获取结果。

result = dbSendQuery(mysqlconnection, "select * from actor where last_name = 'TORN'")

# Fetch all the records(with n = -1) and store it as a data frame.
data.frame = fetch(result, n = -1)
print(data)

当我们执行上面的代码,它产生以下结果 -

        actor_id    first_name     last_name         last_update
1        18         DAN            TORN              2006-02-15 04:34:33
2        94         KENNETH        TORN              2006-02-15 04:34:33
3       102         WALTER         TORN              2006-02-15 04:34:33

更新表中的行

我们可以通过将更新查询传递给dbSendQuery()函数来更新Mysql表中的行。

dbSendQuery(mysqlconnection, "update mtcars set disp = 168.5 where hp = 110")

在执行上面的代码后,我们可以看到在MySql环境中更新的表。

将数据插入表中

dbSendQuery(mysqlconnection,
   "insert into mtcars(row_names, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb)
   values('New Mazda RX4 Wag', 21, 6, 168.5, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4)"
)

在执行上面的代码后,我们可以看到插入到MySql环境中的表中的行。

在MySql中创建表

我们可以在MySql中使用函数dbWriteTable()创建表。 如果表已经存在,它将覆盖该表,并将数据帧用作输入。

# Create the connection object to the database where we want to create the table.
mysqlconnection = dbConnect(MySQL(), user = 'root', password = '', dbname = 'sakila', 
   host = 'localhost')

# Use the R data frame "mtcars" to create the table in MySql.
# All the rows of mtcars are taken inot MySql.
dbWriteTable(mysqlconnection, "mtcars", mtcars[, ], overwrite = TRUE)

执行上面的代码后,我们可以看到在MySql环境中创建的表。

删除MySql中的表

我们可以删除MySql数据库中的表,将drop table语句传递到dbSendQuery()中,就像我们使用它查询表中的数据一样。

dbSendQuery(mysqlconnection, 'drop table if exists mtcars')

执行上面的代码后,我们可以看到表在MySql环境中被删除。


R语言 Web数据
R语言 平均值,中位数和模式
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }