codecamp

Spark Streaming监控应用程序

Spark Streaming监控应用程序

除了Spark的监控功能,Spark Streaming增加了一些专有的功能。应用StreamingContext的时候,Spark web UI显示添加的Streaming菜单,用以显示运行的receivers(receivers是否是存活状态、接收的记录数、receiver错误等)和完成的批的统计信息(批处理时间、队列等待等待)。这可以用来监控流应用程序的处理过程。

在WEB UI中的Processing TimeScheduling Delay两个度量指标是非常重要的。第一个指标表示批数据处理的时间,第二个指标表示前面的批处理完毕之后,当前批在队列中的等待时间。如果批处理时间比批间隔时间持续更长或者队列等待时间持续增加,这就预示系统无法以批数据产生的速度处理这些数据,整个处理过程滞后了。在这种情况下,考虑减少批处理时间。

Spark Streaming程序的处理过程也可以通过StreamingListener接口来监控,这个接口允许你获得receiver状态和处理时间。注意,这个接口是开发者API,它有可能在未来提供更多的信息。

Spark Streaming部署应用程序
Spark Streaming减少批数据的执行时间
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }