codecamp

DStreams缓存或持久化

缓存或持久化

和RDD相似,DStreams也允许开发者持久化流数据到内存中。在DStream上使用persist()方法可以自动地持久化DStream中的RDD到内存中。如果DStream中的数据需要计算多次,这是非常有用的。像reduceByWindowreduceByKeyAndWindow这种窗口操作、updateStateByKey这种基于状态的操作,持久化是默认的,不需要开发者调用persist()方法。

例如通过网络(如kafka,flume等)获取的输入数据流,默认的持久化策略是复制数据到两个不同的节点以容错。

注意,与RDD不同的是,DStreams默认持久化级别是存储序列化数据到内存中,这将在性能调优章节介绍。更多的信息请看rdd持久化

DStream的输出操作
Spark Streaming Checkpointing
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }