HiveQL 连接
JOIN是子句用于通过使用共同值组合来自两个表特定字段。它是用来从数据库中的两个或更多的表组合的记录。它或多或少类似于SQL JOIN。
语法
join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition | table_reference CROSS JOIN table_reference [join_condition]
示例
我们在本章中将使用下面的两个表。考虑下面的表CUSTOMERS..
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
考虑另一个表命令如下:
+-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+
有不同类型的联接给出如下:
- JOIN
- LEFT OUTER JOIN
- RIGHT OUTER JOIN
- FULL OUTER JOIN
JOIN
JOIN子句用于合并和检索来自多个表中的记录。 JOIN和SQLOUTER JOIN 类似。连接条件是使用主键和表的外键。
下面的查询执行JOIN的CUSTOMER和ORDER表,并检索记录:
hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT > FROM CUSTOMERS c JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,能看到以下回应:
+----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+
LEFT OUTER JOIN
HiveQL LEFT OUTER JOIN返回所有行左表,即使是在正确的表中没有匹配。这意味着,如果ON子句匹配的右表0(零)记录,JOIN还是返回结果行,但在右表中的每一列为NULL。
LEFT JOIN返回左表中的所有的值,加上右表,或JOIN子句没有匹配的情况下返回NULL。
下面的查询演示了CUSTOMER 和ORDER 表之间的LEFT OUTER JOIN用法:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > LEFT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,能看到以下回应:
+----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+
RIGHT OUTER JOIN
HiveQL RIGHT OUTER JOIN返回右边表的所有行,即使有在左表中没有匹配。如果ON子句的左表匹配0(零)的记录,JOIN结果返回一行,但在左表中的每一列为NULL。
RIGHT JOIN返回右表中的所有值,加上左表,或者没有匹配的情况下返回NULL。
下面的查询演示了在CUSTOMER和ORDER表之间使用RIGHT OUTER JOIN。
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > RIGHT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,能看到以下回应:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+
FULL OUTER JOIN
HiveQL FULL OUTER JOIN结合了左边,并且满足JOIN条件合适外部表的记录。连接表包含两个表的所有记录,或两侧缺少匹配结果那么使用NULL值填补
下面的查询演示了CUSTOMER 和ORDER 表之间使用的FULL OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > FULL OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,能看到以下回应:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+