codecamp

HiveQL Select语句与Where子句

Hive查询语言(HiveQL)是一种查询语言,Hive处理在Metastore分析结构化数据。本章介绍了如何使用SELECT语句的WHERE子句。

SELECT语句用来从表中检索的数据。 WHERE子句中的工作原理类似于一个条件。它使用这个条件过滤数据,并返回给出一个有限的结果。内置运算符和函数产生一个表达式,满足以下条件。

语法

下面给出的是SELECT查询的语法:

SELECT [ALL | DISTINCT] select_expr, select_expr, ... 
FROM table_reference 
[WHERE where_condition] 
[GROUP BY col_list] 
[HAVING having_condition] 
[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]] 
[LIMIT number];

示例

让我们举个例子SELECT ... WHERE子句。假设employee表有如下 Id, Name, Salary, Designation, 和 Dept等字段,生成一个查询检索超过30000薪水的员工详细信息。

+------+--------------+-------------+-------------------+--------+
| ID   | Name         | Salary      | Designation       | Dept   |
+------+--------------+-------------+-------------------+--------+
|1201  | Gopal        | 45000       | Technical manager | TP     |
|1202  | Manisha      | 45000       | Proofreader       | PR     |
|1203  | Masthanvali  | 40000       | Technical writer  | TP     |
|1204  | Krian        | 40000       | Hr Admin          | HR     |
|1205  | Kranthi      | 30000       | Op Admin          | Admin  | 
+------+--------------+-------------+-------------------+--------+

下面的查询检索使用上述业务情景的员工详细信息:

hive> SELECT * FROM employee WHERE salary>30000;

成功执行查询后,能看到以下回应:

+------+--------------+-------------+-------------------+--------+
| ID   | Name         | Salary      | Designation       | Dept   |
+------+--------------+-------------+-------------------+--------+
|1201  | Gopal        | 45000       | Technical manager | TP     |
|1202  | Manisha      | 45000       | Proofreader       | PR     |
|1203  | Masthanvali  | 40000       | Technical writer  | TP     |
|1204  | Krian        | 40000       | Hr Admin          | HR     |
+------+--------------+-------------+-------------------+--------+

JDBC 程序

在JDBC程序应用,其中针对给定的例子如下子句。

import java.sql.SQLException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.DriverManager;

public class HiveQLWhere {
   private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver";
   
   public static void main(String[] args) throws SQLException {
   
      // Register driver and create driver instance
      Class.forName(driverName);
      
      // get connection
      Connection con = DriverManager.getConnection("jdbc:hive://localhost:10000/userdb", "", "");
      
      // create statement
      Statement stmt = con.createStatement();
      
      // execute statement
      Resultset res = stmt.executeQuery("SELECT * FROM employee WHERE salary>30000;");
      
      System.out.println("Result:");
      System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");
      
      while (res.next()) {
         System.out.println(res.getInt(1) + " " + res.getString(2) + " " + res.getDouble(3) + " " + res.getString(4) + " " + res.getString(5));
      }
      con.close();
   }
}

保存程序在一个名为HiveQLWhere.java文件。使用下面的命令来编译和执行这个程序。

$ javac HiveQLWhere.java
$ java HiveQLWhere

输出:

ID       Name           Salary      Designation          Dept
1201     Gopal          45000       Technical manager    TP
1202     Manisha        45000       Proofreader          PR
1203     Masthanvali    40000       Technical writer     TP
1204     Krian          40000       Hr Admin             HR



Hive 视图和索引
HiveQL Select语句与Order By子句
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }