codecamp

Pandas 数据重采样

数据重采样是将时间序列从一个频率转换至另一个频率的过程,它主要有两种实现方式,分别是降采样和升采样,降采样指将高频率的数据转换为低频率,升采样则与其恰好相反,说明如下:

方法 说明
降采样 将高频率(间隔短)数据转换为低频率(间隔长)。
升采样 将低频率数据转换为高频率。

Pandas 提供了 resample() 函数来实现数据的重采样。

降采样

通过 resample() 函数完成数据的降采样,比如按天计数的频率转换为按月计数。

import pandas as pd
import numpy as np
rng = pd.date_range('1/1/2021',periods=100,freq='D')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
#降采样后并聚合
ts.resample('M').mean() 

输出结果:

2021-01-31    0.210353
2021-02-28   -0.058859
2021-03-31   -0.182952
2021-04-30    0.205254
Freq: M, dtype: float64

如果您只想看到月份,那么您可以设置kind=period如下所示:

import pandas as pd
import numpy as np
rng = pd.date_range('1/1/2021',periods=100,freq='D')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
#降采样后并聚合
ts.resample('M',kind='period').mean()

输出结果:

2021-01   -0.153121
2021-02    0.136231
2021-03   -0.238975
2021-04   -0.309502
Freq: M, dtype: float64

升采样

升采样是将低频率(时间间隔)转换为高频率,示例如下:

import pandas as pd
import numpy as np
#生成一份时间序列数据
rng = pd.date_range('1/1/2021', periods=20, freq='3D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
print(ts.head())
#使用asfreq()在原数据基础上实现频率转换
print(ts.resample('D').asfreq().head())

输出结果:

升采样前:
2021-01-01    0.608716
2021-01-04    1.097451
2021-01-07   -1.280173
2021-01-10   -0.175065
2021-01-13    1.046831
Freq: 3D, dtype: float64
升采样后:
2021-01-01    0.608716
2021-01-02         NaN
2021-01-03         NaN
2021-01-04    1.097451
2021-01-05         NaN
Freq: D, dtype: float64

频率转换

asfreq() 方法不仅能够实现频率转换,还可以保留原频率对应的数值,同时它也可以单独使用,示例如下:

import pandas as pd

index = pd.date_range('1/1/2021', periods=6, freq='T')
series = pd.Series([0.0, None, 2.0, 3.0,4.0,5.0], index=index)
df = pd.DataFrame({'s':series})
print(df.asfreq("45s"))

输出结果:

                     num
2021-01-01 00:00:00  0.0
2021-01-01 00:00:45  NaN
2021-01-01 00:01:30  NaN
2021-01-01 00:02:15  NaN
2021-01-01 00:03:00  3.0
2021-01-01 00:03:45  NaN
2021-01-01 00:04:30  NaN

插值处理

从上述示例不难看出,升采样的结果会产生缺失值,那么就需要对缺失值进行处理,一般有以下几种处理方式:

方法 说明
pad/ffill 用前一个非缺失值去填充缺失值。
backfill/bfill 用后一个非缺失值去填充缺失值。
interpolater('linear') 线性插值方法。
fillna(value) 指定一个值去替换缺失值。

下面使用插值方法处理 NaN 值,示例如下:

import pandas as pd
import numpy as np
#创建时间序列数据
rng = pd.date_range('1/1/2021', periods=20, freq='3D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
print(ts.resample('D').asfreq().head())
#使用ffill处理缺失值
print(ts.resample('D').asfreq().ffill().head())

输出结果:

2021-01-01    0.555580
2021-01-02         NaN
2021-01-03         NaN
2021-01-04   -0.079324
2021-01-05         NaN
Freq: D, dtype: float64

#插值处理,注意对比
2021-01-01    0.555580
2021-01-02    0.555580
2021-01-03    0.555580
2021-01-04   -0.079324
2021-01-05   -0.079324
Freq: D, dtype: float64


Pandas 随机抽样
Pandas分类对象
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }