Pandas统计函数
Pandas 的本质是统计学原理在计算机领域的一种应用实现,通过编程的方式达到分析、描述数据的目的。而统计函数则是统计学中用于计算和分析数据的一种工具。在数据分析的过程中,使用统计函数有助于我们理解和分析数据。本节将学习几个常见的统计函数,比如百分比函数、协方差函数、相关系数等。
百分比变化(pct_change)
Series 和 DatFrames 都可以使用 pct_change() 函数。该函数将每个元素与其前一个元素进行比较,并计算前后数值的百分比变化。示例如下:
import pandas as pd
import numpy as np
#Series结构
s = pd.Series([1,2,3,4,5,4])
print (s.pct_change())
#DataFrame
df = pd.DataFrame(np.random.randn(5, 2))
print(df.pct_change())
输出结果:
0 NaN 1 1.000000 2 0.500000 3 0.333333 4 0.250000 5 -0.200000 dtype: float64 0 1 0 NaN NaN 1 74.779242 0.624260 2 -0.353652 -1.104352 3 -2.422813 -13.994103 4 -3.828316 -1.853092
默认情况下,pct_change() 对列进行操作,如果想要操作行,则需要传递参数 axis=1 参数。示例如下:
import pandas as pd
import numpy as np
#DataFrame
df = pd.DataFrame(np.random.randn(3, 2))
print(df.pct_change(axis=1))
输出结果:
0 1 0 NaN 3.035670 1 NaN -0.318259 2 NaN 0.227580
协方差(cov)
Series 对象提供了一个cov方法用来计算 Series 对象之间的协方差。同时,该方法也会将缺失值(NAN )自动排除。
示例如下:
import pandas as pd
import numpy as np
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
print(s1)
print(s2)
print (s1.cov(s2))
输出结果:
0 1.640352
1 1.448355
2 0.545730
3 0.309628
4 0.557345
5 3.170734
6 0.976215
7 -0.223657
8 0.511220
9 1.696891
dtype: float64
0 0.990263
1 2.309879
2 -1.078195
3 1.835674
4 -0.121354
5 0.959632
6 -0.872707
7 1.879808
8 0.203775
9 -1.818213
dtype: float64
-0.09872075651634744
当应用于 DataFrame 时,协方差(cov)将计算所有列之间的协方差。
import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
#计算a与b之间的协方差值
print (frame['a'].cov(frame['b']))
#计算所有数列的协方差值
print (frame.cov())
输出结果:
-0.37822395480394827 a b c d e a 1.643529 -0.378224 0.181642 0.049969 -0.113700 b -0.378224 1.561760 -0.054868 0.144664 -0.231134 c 0.181642 -0.054868 0.628367 -0.125703 0.324442 d 0.049969 0.144664 -0.125703 0.480301 -0.388879 e -0.113700 -0.231134 0.324442 -0.388879 0.848377
相关系数(corr)
相关系数显示任意两个 Series 之间的线性关系。Pandas 提供了计算相关性的三种方法,分别是 pearson(default)、spearman() 和 kendall()。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print (df['b'].corr(frame['c']))
print (df.corr())
输出结果:
0.5540831507407936 a b c d e a 1.000000 -0.500903 -0.058497 -0.767226 0.218416 b -0.500903 1.000000 -0.091239 0.805388 -0.020172 c -0.058497 -0.091239 1.000000 0.115905 0.083969 d -0.767226 0.805388 0.115905 1.000000 0.015028 e 0.218416 -0.020172 0.083969 0.015028 1.000000
注意:如果 DataFrame 存在非数值(NAN),该方法会自动将其删除。
排名(rank)
rank() 按照某种规则(升序或者降序)对序列中的元素值排名,该函数的返回值的也是一个序列,包含了原序列中每个元素值的名次。如果序列中包含两个相同的的元素值,那么会为其分配两者的平均排名。示例如下:
import pandas as pd
import numpy as np
#返回5个随机值,然后使用rank对其排名
s = pd.Series(np.random.randn(5), index=list('abcde'))
s['d'] = s['b']
print(s)
#a/b排名分别为2和3,其平均排名为2.5
print(s.rank())
输出结果:
a -0.689585 b -0.545871 c 0.148264 d -0.545871 e -0.205043 dtype: float64 排名后输出: a 1.0 b 2.5 c 5.0 d 2.5 e 4.0 dtype: float64
1) method参数
rank() 提供了 method 参数,可以针对相同数据,进行不同方式的排名。如下所示:
- average:默认值,如果数据相同则分配平均排名;
- min:给相同数据分配最低排名;
- max:给相同数据分配最大排名;
- first:对于相同数据,根据出现在数组中的顺序进行排名。
2) aisx&ascening
rank() 有一个ascening参数, 默认为 True 代表升序;如果为 False,则表示降序排名(将较大的数值分配给较小的排名)。
rank() 默认按行方向排名(axis=0),也可以更改为 axis =1,按列排名。示例如下:
import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(12).reshape(3,4),columns = list("abdc"))
a =a.sort_index(axis=1,ascending=False)
a.iloc[[1,1],[1,2]] = 6
#按行排名,将相同数值设置为所在行数值的最大排名
print(a.rank(axis=1,method="max"))
输出结果:
d c b a 0 3.0 4.0 2.0 1.0 1 4.0 4.0 4.0 1.0 2 3.0 4.0 2.0 1.0
与 method="min"进行对比,如下所示:
输出结果:
d c b a 0 3.0 4.0 2.0 1.0 1 2.0 2.0 2.0 1.0 2 3.0 4.0 2.0 1.0