codecamp

PyTorch 转移学习的计算机视觉教程

原文: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

作者: Sasank Chilamkurthy

在本教程中,您将学习如何使用转移学习训练卷积神经网络进行图像分类。 您可以在 cs231n 笔记上了解有关转移学习的更多信息。

引用这些注释,

实际上,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对很少。 相反,通常在非常大的数据集上对 ConvNet 进行预训练(例如 ImageNet,其中包含 120 万个具有 1000 个类别的图像),然后将 ConvNet 用作初始化或固定特征提取器以完成感兴趣的任务。

这两个主要的转移学习方案如下所示:

  • 对卷积网络进行微调:代替随机初始化,我们使用经过预训练的网络初始化网络,例如在 imagenet 1000 数据集上进行训练的网络。 其余的训练照常进行。
  • ConvNet 作为固定特征提取器:在这里,我们将冻结除最终完全连接层以外的所有网络的权重。 最后一个完全连接的层将替换为具有随机权重的新层,并且仅训练该层。
# License: BSD
## Author: Sasank Chilamkurthy


from __future__ import print_function, division


import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy


plt.ion()   # interactive mode

载入资料

我们将使用 torchvision 和 torch.utils.data 包来加载数据。

我们今天要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。 我们为蚂蚁和蜜蜂提供了大约 120 张训练图像。 每个类别有 75 个验证图像。 通常,如果从头开始训练的话,这是一个很小的数据集。 由于我们正在使用迁移学习,因此我们应该能够很好地概括。

该数据集是 imagenet 的很小一部分。

注意

此处下载数据,并将其解压缩到当前目录。

# Data augmentation and normalization for training
## Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}


data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

可视化一些图像

让我们可视化一些训练图像,以了解数据扩充。

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


## Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))


## Make a grid from batch
out = torchvision.utils.make_grid(inputs)


imshow(out, title=[class_names[x] for x in classes])

../_images/sphx_glr_transfer_learning_tutorial_001.png

训练模型

现在,让我们编写一个通用函数来训练模型。 在这里,我们将说明:

  • 安排学习率
  • 保存最佳模型

以下,参数scheduler是来自torch.optim.lr_scheduler的 LR 调度程序对象。

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()


    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0


    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)


        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode


            running_loss = 0.0
            running_corrects = 0


            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)


                # zero the parameter gradients
                optimizer.zero_grad()


                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)


                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()


                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == 'train':
                scheduler.step()


            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]


            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))


            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())


        print()


    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))


    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

可视化模型预测

通用功能可显示一些图像的预测

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()


    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)


            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)


            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])


                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

微调 convnet

加载预训练的模型并重置最终的完全连接层。

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
## Here the size of each output sample is set to 2.
## Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 2)


model_ft = model_ft.to(device)


criterion = nn.CrossEntropyLoss()


## Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)


## Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

训练和评估

在 CPU 上大约需要 15-25 分钟。 但是在 GPU 上,此过程不到一分钟。

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)

得出:

Epoch 0/24
----------
train Loss: 0.5582 Acc: 0.6967
val Loss: 0.1987 Acc: 0.9216


Epoch 1/24
----------
train Loss: 0.4663 Acc: 0.8238
val Loss: 0.2519 Acc: 0.8889


Epoch 2/24
----------
train Loss: 0.5978 Acc: 0.7623
val Loss: 1.2933 Acc: 0.6601


Epoch 3/24
----------
train Loss: 0.4471 Acc: 0.8320
val Loss: 0.2576 Acc: 0.8954


Epoch 4/24
----------
train Loss: 0.3654 Acc: 0.8115
val Loss: 0.2977 Acc: 0.9150


Epoch 5/24
----------
train Loss: 0.4404 Acc: 0.8197
val Loss: 0.3330 Acc: 0.8627


Epoch 6/24
----------
train Loss: 0.6416 Acc: 0.7623
val Loss: 0.3174 Acc: 0.8693


Epoch 7/24
----------
train Loss: 0.4058 Acc: 0.8361
val Loss: 0.2551 Acc: 0.9085


Epoch 8/24
----------
train Loss: 0.2294 Acc: 0.9098
val Loss: 0.2603 Acc: 0.9085


Epoch 9/24
----------
train Loss: 0.2805 Acc: 0.8730
val Loss: 0.2765 Acc: 0.8954


Epoch 10/24
----------
train Loss: 0.3139 Acc: 0.8525
val Loss: 0.2639 Acc: 0.9020


Epoch 11/24
----------
train Loss: 0.3198 Acc: 0.8648
val Loss: 0.2458 Acc: 0.9020


Epoch 12/24
----------
train Loss: 0.2947 Acc: 0.8811
val Loss: 0.2835 Acc: 0.8889


Epoch 13/24
----------
train Loss: 0.3097 Acc: 0.8730
val Loss: 0.2542 Acc: 0.9085


Epoch 14/24
----------
train Loss: 0.1849 Acc: 0.9303
val Loss: 0.2710 Acc: 0.9085


Epoch 15/24
----------
train Loss: 0.2764 Acc: 0.8934
val Loss: 0.2522 Acc: 0.9085


Epoch 16/24
----------
train Loss: 0.2214 Acc: 0.9098
val Loss: 0.2620 Acc: 0.9085


Epoch 17/24
----------
train Loss: 0.2949 Acc: 0.8525
val Loss: 0.2600 Acc: 0.9085


Epoch 18/24
----------
train Loss: 0.2237 Acc: 0.9139
val Loss: 0.2666 Acc: 0.9020


Epoch 19/24
----------
train Loss: 0.2456 Acc: 0.8852
val Loss: 0.2521 Acc: 0.9150


Epoch 20/24
----------
train Loss: 0.2351 Acc: 0.8852
val Loss: 0.2781 Acc: 0.9085


Epoch 21/24
----------
train Loss: 0.2654 Acc: 0.8730
val Loss: 0.2560 Acc: 0.9085


Epoch 22/24
----------
train Loss: 0.1955 Acc: 0.9262
val Loss: 0.2605 Acc: 0.9020


Epoch 23/24
----------
train Loss: 0.2285 Acc: 0.8893
val Loss: 0.2650 Acc: 0.9085


Epoch 24/24
----------
train Loss: 0.2360 Acc: 0.9221
val Loss: 0.2690 Acc: 0.8954


Training complete in 1m 7s
Best val Acc: 0.921569
visualize_model(model_ft)

../_images/sphx_glr_transfer_learning_tutorial_002.png

ConvNet 作为固定特征提取器

在这里,我们需要冻结除最后一层之外的所有网络。 我们需要设置requires_grad == False冻结参数,以便不在backward()中计算梯度。

您可以在的文档中阅读有关此内容的更多信息。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False


## Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)


model_conv = model_conv.to(device)


criterion = nn.CrossEntropyLoss()


## Observe that only parameters of final layer are being optimized as
## opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)


## Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

Train and evaluate

与以前的方案相比,在 CPU 上将花费大约一半的时间。 这是可以预期的,因为不需要为大多数网络计算梯度。 但是,确实需要计算正向。

model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)

得出:

Epoch 0/24
----------
train Loss: 0.5633 Acc: 0.7008
val Loss: 0.2159 Acc: 0.9412


Epoch 1/24
----------
train Loss: 0.4394 Acc: 0.7623
val Loss: 0.2000 Acc: 0.9150


Epoch 2/24
----------
train Loss: 0.5182 Acc: 0.7623
val Loss: 0.1897 Acc: 0.9346


Epoch 3/24
----------
train Loss: 0.3993 Acc: 0.8074
val Loss: 0.3029 Acc: 0.8824


Epoch 4/24
----------
train Loss: 0.4163 Acc: 0.8607
val Loss: 0.2190 Acc: 0.9412


Epoch 5/24
----------
train Loss: 0.4741 Acc: 0.7951
val Loss: 0.1903 Acc: 0.9477


Epoch 6/24
----------
train Loss: 0.4266 Acc: 0.8115
val Loss: 0.2178 Acc: 0.9281


Epoch 7/24
----------
train Loss: 0.3623 Acc: 0.8238
val Loss: 0.2080 Acc: 0.9412


Epoch 8/24
----------
train Loss: 0.3979 Acc: 0.8279
val Loss: 0.1796 Acc: 0.9412


Epoch 9/24
----------
train Loss: 0.3534 Acc: 0.8648
val Loss: 0.2043 Acc: 0.9412


Epoch 10/24
----------
train Loss: 0.3849 Acc: 0.8115
val Loss: 0.2012 Acc: 0.9346


Epoch 11/24
----------
train Loss: 0.3814 Acc: 0.8361
val Loss: 0.2088 Acc: 0.9412


Epoch 12/24
----------
train Loss: 0.3443 Acc: 0.8648
val Loss: 0.1823 Acc: 0.9477


Epoch 13/24
----------
train Loss: 0.2931 Acc: 0.8525
val Loss: 0.1853 Acc: 0.9477


Epoch 14/24
----------
train Loss: 0.2749 Acc: 0.8811
val Loss: 0.2068 Acc: 0.9412


Epoch 15/24
----------
train Loss: 0.3387 Acc: 0.8566
val Loss: 0.2080 Acc: 0.9477


Epoch 16/24
----------
train Loss: 0.2992 Acc: 0.8648
val Loss: 0.2096 Acc: 0.9346


Epoch 17/24
----------
train Loss: 0.3396 Acc: 0.8648
val Loss: 0.1870 Acc: 0.9412


Epoch 18/24
----------
train Loss: 0.3956 Acc: 0.8320
val Loss: 0.1858 Acc: 0.9412


Epoch 19/24
----------
train Loss: 0.3379 Acc: 0.8402
val Loss: 0.1729 Acc: 0.9542


Epoch 20/24
----------
train Loss: 0.2555 Acc: 0.8811
val Loss: 0.2186 Acc: 0.9281


Epoch 21/24
----------
train Loss: 0.3764 Acc: 0.8484
val Loss: 0.1817 Acc: 0.9477


Epoch 22/24
----------
train Loss: 0.2747 Acc: 0.8975
val Loss: 0.2042 Acc: 0.9412


Epoch 23/24
----------
train Loss: 0.3072 Acc: 0.8689
val Loss: 0.1924 Acc: 0.9477


Epoch 24/24
----------
train Loss: 0.3479 Acc: 0.8402
val Loss: 0.1835 Acc: 0.9477


Training complete in 0m 34s
Best val Acc: 0.954248
visualize_model(model_conv)


plt.ioff()
plt.show()

../_images/sphx_glr_transfer_learning_tutorial_003.png

进阶学习

如果您想了解有关迁移学习的更多信息,请查看我们的计算机视觉教程的量化迁移学习

脚本的总运行时间:(1 分钟 53.551 秒)

Download Python source code: transfer_learning_tutorial.py Download Jupyter notebook: transfer_learning_tutorial.ipynb

由狮身人面像画廊生成的画廊


PyTorch TorchVision 对象检测微调教程
PyTorch 空间变压器网络教程
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

Pytorch 音频

PyTorch 命名为 Tensor(实验性)

PyTorch 强化学习

PyTorch 用其他语言

PyTorch 语言绑定

PyTorch torchvision参考

PyTorch 音频参考

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }