回溯 罗密欧与朱丽叶
问题
罗密欧与朱丽叶的迷宫问题 ,回溯法实现。
【问题描述】罗密欧与朱丽叶的迷宫。罗密欧与朱丽叶身处一个m×n的迷宫中,如图所示。每一个方格表示迷宫中的一个房间。这m×n个房间中有一些房间是封闭的,不允许任何人进入。在迷宫中任何位置均可沿8 个方向进入未封闭的房间。罗密欧位于迷宫的(p,q)方格中,他必须找出一条通向朱丽叶所在的(r,s)方格的路。在抵达朱丽叶之前,他必须走遍所有未封闭的房间各一次,而且要使到达朱丽叶的转弯次数为最少。每改变一次前进方向算作转弯一次。请设计一个算法帮助罗密欧找出这样一条道路。
解法
#pragma warning(disable:4996)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
using namespace std;
int n, m, k;
int map[105][105];
int path[105 * 105];
int best[105 * 105];
int dx[] = { 0,0,1,-1,1,1,-1,-1 };
int dy[] = { 1,-1,0,0,1,-1,-1,1 };
int p, q, r, s;
int minturn = 0x3f3f3f3f;
int num = 0;
void backtrack(int x, int y, int cur)
{
if (cur >= n * m - k)
{
if (x != r || y != s) return;
int turn = 0;
for (int i = 2; i < cur; i++)
if (path[i] != path[i - 1]) turn++;
if (turn < minturn)
{
memcpy(best, path, sizeof(path));
minturn = turn;
num = 1;
}
else if (turn == minturn) num++;
return;
}
for (int i = 0; i < 8; i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if (map[xx][yy] == -1) continue;
if (xx<1 || xx>n || yy<1 || yy>m) continue;
path[cur] = i;
map[xx][yy] = -1;
backtrack(xx, yy, cur + 1);
map[xx][yy] = 0;
}
}
void path_solve()
{
int x = p, y = q;
map[p][q] = 1;
for (int i = 1; i < n * m - k; i++)
{
int xx = x + dx[best[i]];
int yy = y + dy[best[i]];
map[xx][yy] = map[x][y] + 1;
x = xx;
y = yy;
}
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < k; i++)
{
int x, y;
scanf("%d%d", &x, &y);
map[x][y] = -1;
}
scanf("%d%d%d%d", &p, &q, &r, &s);
map[p][q] = -1;
backtrack(p, q, 1);
path_solve();
printf("%d\n%d\n", minturn, num);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (j != 1) printf(" ");
printf("%d", map[i][j]);
}
printf("\n");
}
}