链表 有序链表转换二叉搜索树
题目
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
给定的有序链表: [-10, -3, 0, 5, 9],
一个可能的答案是:[0, -3, 9, -10, null, 5], 它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
解题
/**
* Definition for singly-linked list. public class ListNode { int val; ListNode next; ListNode(int
* x) { val = x; } }
*/
/**
* Definition for a binary tree node. public class TreeNode { int val; TreeNode left; TreeNode
* right; TreeNode(int x) { val = x; } }
*/
class Solution {
private ListNode findMiddleElement(ListNode head) {
// The pointer used to disconnect the left half from the mid node.
ListNode prevPtr = null;
ListNode slowPtr = head;
ListNode fastPtr = head;
// Iterate until fastPr doesn't reach the end of the linked list.
while (fastPtr != null && fastPtr.next != null) {
prevPtr = slowPtr;
slowPtr = slowPtr.next;
fastPtr = fastPtr.next.next;
}
// Handling the case when slowPtr was equal to head.
if (prevPtr != null) {
prevPtr.next = null;
}
return slowPtr;
}
public TreeNode sortedListToBST(ListNode head) {
// If the head doesn't exist, then the linked list is empty
if (head == null) {
return null;
}
// Find the middle element for the list.
ListNode mid = this.findMiddleElement(head);
// The mid becomes the root of the BST.
TreeNode node = new TreeNode(mid.val);
// Base case when there is just one element in the linked list
if (head == mid) {
return node;
}
// Recursively form balanced BSTs using the left and right halves of the original list.
node.left = this.sortedListToBST(head);
node.right = this.sortedListToBST(mid.next);
return node;
}
}