codecamp

线性容器

线性容器实现能按顺序访问的数据结构,其底层主要通过数组实现,包括ArrayList、Vector、List、LinkedList、Deque、Queue、Stack七种。

线性容器,充分考虑了数据访问的速度,运行时(Runtime)通过一条字节码指令就可以完成增、删、改、查等操作。

ArrayList

ArrayList即动态数组,可用来构造全局的数组对象。 当需要频繁读取集合中的元素时,推荐使用ArrayList。

ArrayList依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为10,并支持动态扩容,每次扩容大小为原始容量的1.5倍。

ArrayList进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过add(element: T)函数每次在数组尾部增加一个元素。

通过insert(element: T, index: number)在指定位置插入一个元素。

访问元素

通过arr[index]获取指定index对应的value值,通过指令获取保证访问速度。

通过forEach(callbackFn: (value: T, index?: number, arrlist?: ArrayList<T>) => void, thisArg?: Object): void访问整个ArrayList容器的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过arr[index] = xxx修改指定index位置对应的value值。

删除元素

通过remove(element: T)删除第一个匹配到的元素。

通过removeByRange(fromIndex: number, toIndex:number)删除指定范围内的元素。

Vector

说明

API version 9开始,该接口不再维护,推荐使用ArrayList

Vector是指连续存储结构,可用来构造全局的数组对象。Vector依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为10,并支持动态扩容,每次扩容大小为原始容量的2倍。

Vector和ArrayList相似,都是基于数组实现,但Vector提供了更多操作数组的接口。Vector在支持操作符访问的基础上,还增加了get/set接口,提供更为完善的校验及容错机制,满足用户不同场景下的需求。

Vector进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过add(element: T)函数每次在数组尾部增加一个元素。

通过insert(element: T, index: number)在指定位置插入一个元素。

访问元素

通过vec[index]获取指定index对应的value值,通过指令获取保证访问速度。

通过get(index: number)获取指定index位置对应的元素。

通过getLastElement()获取最后一个元素。

通过getIndexOf(element:T)获取第一个匹配到元素的位置。

通过getLastIndexOf(element:T)获取最后一个匹配到元素的位置。

通过forEach(callbackFn: (value: T, index?: number, Vector?: Vector<T>) => void, thisArg?: Object)访问整个Vector的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过vec[index]=xxx修改指定index位置对应的value值。

通过set(index:number,element:T)修改指定index位置的元素值为element。

通过setLength(newSize:number)设置Vector的长度大小。

删除元素

通过removeByIndex(index:number)删除index位置对应的value值。

通过remove(element:T)删除第一个匹配到的元素。

通过removeByRange(fromIndex:number,toIndex:number)删除指定范围内的元素。

List

List可用来构造一个单向链表对象,即只能通过头节点开始访问到尾节点。List依据泛型定义,在内存中的存储位置可以是不连续的。

List和LinkedList相比,LinkedList是双向链表,可以快速地在头尾进行增删,而List是单向链表,无法双向操作。

当需要频繁的插入删除时,推荐使用List高效操作。

可以通过get/set等接口对存储的元素进行修改,List进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过add(element: T)函数每次在数组尾部增加一个元素。

通过insert(element: T, index: number)在指定位置插入一个元素。

访问元素

通过list[index]获取指定index对应的value值,通过指令获取保证访问速度。

通过get(index: number)获取指定index位置对应的元素。

通过getFirst()获取第一个元素。

通过getLast()获取最后一个元素。

通过getIndexOf(element: T)获取第一个匹配到元素的位置。

通过getLastIndexOf(element: T)获取最后一个匹配到元素的位置。

通过forEach(callbackfn: (value:T, index?: number, list?: List<T>)=> void,thisArg?: Object)访问整个List的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过list[index] = xxx修改指定index位置对应的value值。

通过set(index:number, element: T)修改指定index位置的元素值为element。

通过replaceAllElements(callbackFn:(value: T,index?: number,list?: List<T>)=>T,thisArg?: Object)对List内元素进行替换操作。

删除元素

通过removeByIndex(index:number)删除index位置对应的value值。

通过remove(element:T)删除第一个匹配到的元素。

LinkedList

LinkedList可用来构造一个双向链表对象,可以在某一节点向前或者向后遍历List。LinkedList依据泛型定义,在内存中的存储位置可以是不连续的。

LinkedList和List相比,LinkedList是双向链表,可以快速地在头尾进行增删,而List是单向链表,无法双向操作。

LinkedList和ArrayList相比,插入数据效率LinkedList优于ArrayList,而查询效率ArrayList优于LinkedList。

当需要频繁的插入删除时,推荐使用LinkedList高效操作。

可以通过get/set等接口对存储的元素进行修改,LinkedList进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过add(element: T)函数每次在数组尾部增加一个元素。

通过insert(index: number, element: T)在指定位置插入一个元素。

访问元素

通过list[index]获取指定index对应的value值,通过指令获取保证访问速度。

通过get(index: number)获取指定index位置对应的元素。

通过getFirst()获取第一个元素。

通过getLast()获取最后一个元素。

通过getIndexOf(element: T)获取第一个匹配到元素的位置。

通过getLastIndexOf(element: T)获取最后一个匹配到元素的位置。

通过forEach(callbackFn: (value: T, index?: number, list?: LinkedList<T>) => void, thisArg?: Object)访问整个LinkedList的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过list[index]=xxx修改指定index位置对应的value值。

通过set(index: number,element: T)修改指定index位置的元素值为element。

删除元素

通过removeByIndex(index: number)删除index位置对应的value值。

通过remove(element: T)删除第一个匹配到的元素。

Deque

Deque可用来构造双端队列对象,存储元素遵循先进先出以及先进后出的规则,双端队列可以分别从队头或者队尾进行访问。

Deque依据泛型定义,要求存储位置是一片连续的内存空间,其初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的2倍。Deque底层采用循环队列实现,入队及出队操作效率都比较高。

Deque和Queue相比,Queue的特点是先进先出,只能在头部删除元素,尾部增加元素。

Deque和Vector相比,它们都支持在两端增删元素,但Deque不能进行中间插入的操作。对头部元素的插入删除效率高于Vector,而Vector访问元素的效率高于Deque。

需要频繁在集合两端进行增删元素的操作时,推荐使用Deque。

Deque进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过insertFront(element: T)函数每次在队头增加一个元素。

增加元素

通过insertEnd(element: T)函数每次在队尾增加一个元素。

访问元素

通过getFirst()获取队首元素的value值,但是不进行出队操作。

通过getLast()获取队尾元素的value值,但是不进行出队操作。

通过popFirst()获取队首元素的value值,并进行出队操作。

通过popLast()获取队尾元素的value值,并进行出队操作。

通过forEach(callbackFn:(value: T, index?: number, deque?: Deque<T>) => void, thisArg?: Object)访问整个Deque的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过forEach(callbackFn:(value: T, index?: number, deque?: Deque<T>)=> void, thisArg?: Object)对队列进行修改操作。

删除元素

通过popFirst()对队首元素进行出队操作并删除。

通过popLast()对队尾元素进行出队操作并删除。

Queue

Queue可用来构造队列对象,存储元素遵循先进先出的规则。

Queue依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的2倍。

Queue底层采用循环队列实现,入队及出队操作效率都比较高。

Queue和Deque相比,Queue只能在一端删除一端增加,Deque可以两端增删。

一般符合先进先出的场景可以使用Queue。

Queue进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过add(element: T)函数每次在队尾增加一个元素。

访问元素

通过getFirst()获取队首元素的value值,但是不进行出队操作。

通过pop()获取队首元素的value值,并进行出队操作。

通过forEach(callbackFn: (value: T, index?: number, queue?: Queue<T>) => void,thisArg?: Object)访问整个Queue的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

修改元素

通过forEach(callbackFn:(value: T, index?: number, queue?: Queue<T>) => void,thisArg?: Object)对队列进行修改操作。

删除元素

通过pop()对队首进行出队操作并删除。

Stack

Stack可用来构造栈对象,存储元素遵循先进后出的规则。

Stack依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的1.5倍。Stack底层基于数组实现,入栈出栈均从数组的一端操作。

Stack和Queue相比,Queue基于循环队列实现,只能在一端删除,另一端插入,而Stack都在一端操作。

一般符合先进后出的场景可以使用Stack。

Stack进行增、删、改、查操作的常用API如下:

操作

描述

增加元素

通过push(item: T)函数每次在栈顶增加一个元素。

访问元素

通过peek()获取栈顶元素的value值,但是不进行出栈操作。

通过pop()获取栈顶的value值,并进行出栈操作。

通过forEach(callbackFn: (value: T, index?: number, stack?: Stack<T>) => void, thisArg?: Object)访问整个Stack的元素。

通过[Symbol.iterator]():IterableIterator<T>迭代器进行数据访问。

通过locate(element: T)获取元素对应的位置。

修改元素

通过forEach(callbackFn:(value: T, index?: number, stack?: Stack<T>) => void, thisArg?: Object)对栈内元素进行修改操作。

删除元素

通过pop()对栈顶进行出栈操作并删除。

线性容器的使用

此处列举常用的线性容器ArrayList、Vector、Deque、Stack、List的使用示例,包括导入模块、增加元素、访问元素及修改等操作。示例代码如下所示:

  1. // ArrayList
  2. import ArrayList from '@ohos.util.ArrayList'; // 导入ArrayList模块
  3. let arrayList = new ArrayList();
  4. arrayList.add('a');
  5. arrayList.add(1); // 增加元素
  6. console.info(`result: ${arrayList[0]}`); // 访问元素
  7. arrayList[0] = 'one'; // 修改元素
  8. console.info(`result: ${arrayList[0]}`);
  9. // Vector
  10. import Vector from '@ohos.util.Vector'; // 导入Vector模块
  11. let vector = new Vector();
  12. vector.add('a');
  13. let b1 = [1, 2, 3];
  14. vector.add(b1);
  15. vector.add(false); // 增加元素
  16. console.info(`result: ${vector[0]}`); // 访问元素
  17. console.info(`result: ${vector.getFirstElement()}`); // 访问元素
  18. // Deque
  19. import Deque from '@ohos.util.Deque'; // 导入Deque模块
  20. let deque = new Deque;
  21. deque.insertFront('a');
  22. deque.insertFront(1); // 增加元素
  23. console.info(`result: ${deque[0]}`); // 访问元素
  24. deque[0] = 'one'; // 修改元素
  25. console.info(`result: ${deque[0]}`);
  26. // Stack
  27. import Stack from '@ohos.util.Stack'; // 导入Stack模块
  28. let stack = new Stack();
  29. stack.push('a');
  30. stack.push(1); // 增加元素
  31. console.info(`result: ${stack[0]}`); // 访问元素
  32. stack.pop(); // 删除栈顶元素并返回该删除元素
  33. console.info(`result: ${stack.length}`);
  34. // List
  35. import List from '@ohos.util.List'; // 导入List模块
  36. let list = new List;
  37. list.add('a');
  38. list.add(1);
  39. let b2 = [1, 2, 3];
  40. list.add(b2); // 增加元素
  41. console.info(`result: ${list[0]}`); // 访问元素
  42. console.info(`result: ${list.get(0)}`); // 访问元素
同步任务开发指导
非线性容器
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录
HAR

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }