codecamp

AI人工智能 聚类概述

无监督机器学习算法没有任何监督者提供任何指导。 这就是为什么它们与真正的人工智能紧密结合的原因。

在无人监督的学习中,没有正确的答案,也没有监督者指导。 算法需要发现用于学习的有趣数据模式。

基本上,它是一种无监督学习方法,也是用于许多领域的统计数据分析的常用技术。 聚类主要是将观测集合划分为子集(称为聚类)的任务,以同一聚类中的观测在一种意义上相似并且与其他聚类中的观测不相似的方式。 简而言之,可以说聚类的主要目标是根据相似性和不相似性对数据进行分组。

例如,下图显示了不同群集中的类似数据 -

img

AI人工智能 解决难题
AI人工智能 数据聚类算法
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

AI人工智能监督学习(回归)

AI人工智能无监督学习:聚类

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }