C++构建二叉树问题
Question
给定一个二叉树的前序遍历 preorder
和中序遍历 inorder
,请从中构建二叉树,返回二叉树的根节点。
图 12-5 构建二叉树的示例数据
判断是否为分治问题
原问题定义为从 preorder
和 inorder
构建二叉树,其是一个典型的分治问题。
- 问题可以被分解:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每个子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
- 子问题是独立的:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需要关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
- 子问题的解可以合并:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。
如何划分子树
根据以上分析,这道题是可以使用分治来求解的,但如何通过前序遍历 preorder
和中序遍历 inorder
来划分左子树和右子树呢?
根据定义,preorder
和 inorder
都可以被划分为三个部分。
- 前序遍历:
[ 根节点 | 左子树 | 右子树 ]
,例如图 12-5 的树对应[ 3 | 9 | 2 1 7 ]
。 - 中序遍历:
[ 左子树 | 根节点 | 右子树 ]
,例如图 12-5 的树对应[ 9 | 3 | 1 2 7 ]
。
以上图数据为例,我们可以通过图 12-6 所示的步骤得到划分结果。
- 前序遍历的首元素 3 是根节点的值。
- 查找根节点 3 在
inorder
中的索引,利用该索引可将inorder
划分为[ 9 | 3 | 1 2 7 ]
。 - 根据
inorder
划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将preorder
划分为[ 3 | 9 | 2 1 7 ]
。
图 12-6 在前序和中序遍历中划分子树
基于变量描述子树区间
根据以上划分方法,我们已经得到根节点、左子树、右子树在 preorder
和 inorder
中的索引区间。而为了描述这些索引区间,我们需要借助几个指针变量。
- 将当前树的根节点在
preorder
中的索引记为 。 - 将当前树的根节点在
inorder
中的索引记为 。 - 将当前树在
inorder
中的索引区间记为 。
如表 12-1 所示,通过以上变量即可表示根节点在 preorder
中的索引,以及子树在 inorder
中的索引区间。
表 12-1 根节点和子树在前序和中序遍历中的索引
根节点在 preorder 中的索引 |
子树在 inorder 中的索引区间 |
|
---|---|---|
当前树 | ||
左子树 | ||
右子树 |
请注意,右子树根节点索引中的
图 12-7 根节点和左右子树的索引区间表示
4. 代码实现¶
为了提升查询 hmap
来存储数组 inorder
中元素到索引的映射。
build_tree.cpp
/* 构建二叉树:分治 */
TreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return NULL;
// 初始化根节点
TreeNode *root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
unordered_map<int, int> inorderMap;
for (int i = 0; i < inorder.size(); i++) {
inorderMap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
return root;
}
图 12-8 展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(即引用)是在向上“归”的过程中建立的。
图 12-8 构建二叉树的递归过程
每个递归函数内的前序遍历 preorder
和中序遍历 inorder
的划分结果如图 12-9 所示。
图 12-9 每个递归函数中的划分结果
设树的节点数量为 dfs()
)使用
哈希表存储 inorder
元素到索引的映射,空间复杂度为