codecamp

C++构建二叉树问题

Question

给定一个二叉树的前序遍历 preorder 和中序遍历 inorder ,请从中构建二叉树,返回二叉树的根节点。

构建二叉树的示例数据

图 12-5   构建二叉树的示例数据

判断是否为分治问题

原问题定义为从 preorderinorder 构建二叉树,其是一个典型的分治问题。

  • 问题可以被分解:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每个子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
  • 子问题是独立的:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需要关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
  • 子问题的解可以合并:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。

如何划分子树

根据以上分析,这道题是可以使用分治来求解的,但如何通过前序遍历 preorder 和中序遍历 inorder 来划分左子树和右子树呢

根据定义,preorderinorder 都可以被划分为三个部分。

  • 前序遍历:[ 根节点 | 左子树 | 右子树 ] ,例如图 12-5 的树对应 [ 3 | 9 | 2 1 7 ]
  • 中序遍历:[ 左子树 | 根节点 | 右子树 ] ,例如图 12-5 的树对应 [ 9 | 3 | 1 2 7 ]

以上图数据为例,我们可以通过图 12-6 所示的步骤得到划分结果。

  1. 前序遍历的首元素 3 是根节点的值。
  2. 查找根节点 3 在 inorder 中的索引,利用该索引可将 inorder 划分为 [ 9 | 3 | 1 2 7 ]
  3. 根据 inorder 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 preorder 划分为 [ 3 | 9 | 2 1 7 ]

在前序和中序遍历中划分子树

图 12-6   在前序和中序遍历中划分子树

基于变量描述子树区间

根据以上划分方法,我们已经得到根节点、左子树、右子树在 preorderinorder 中的索引区间。而为了描述这些索引区间,我们需要借助几个指针变量。

  • 将当前树的根节点在 preorder 中的索引记为 i
  • 将当前树的根节点在 inorder 中的索引记为 m
  • 将当前树在 inorder 中的索引区间记为 [l,r]

如表 12-1 所示,通过以上变量即可表示根节点在 preorder 中的索引,以及子树在 inorder 中的索引区间。

表 12-1   根节点和子树在前序和中序遍历中的索引

根节点在 preorder 中的索引 子树在 inorder 中的索引区间
当前树 i [l,r]
左子树 i+1 [l,m1]
右子树 i+1+(ml) [m+1,r]

请注意,右子树根节点索引中的 (ml) 的含义是“左子树的节点数量”,建议配合图 12-7 理解。

根节点和左右子树的索引区间表示

图 12-7   根节点和左右子树的索引区间表示

4.   代码实现

为了提升查询 m 的效率,我们借助一个哈希表 hmap 来存储数组 inorder 中元素到索引的映射。

build_tree.cpp

/* 构建二叉树:分治 */
TreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {
    // 子树区间为空时终止
    if (r - l < 0)
        return NULL;
    // 初始化根节点
    TreeNode *root = new TreeNode(preorder[i]);
    // 查询 m ,从而划分左右子树
    int m = inorderMap[preorder[i]];
    // 子问题:构建左子树
    root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
    // 子问题:构建右子树
    root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // 返回根节点
    return root;
}

/* 构建二叉树 */
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
    // 初始化哈希表,存储 inorder 元素到索引的映射
    unordered_map<int, int> inorderMap;
    for (int i = 0; i < inorder.size(); i++) {
        inorderMap[inorder[i]] = i;
    }
    TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
    return root;
}

图 12-8 展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(即引用)是在向上“归”的过程中建立的。

构建二叉树的递归过程

built_tree_step2

built_tree_step3

built_tree_step4

built_tree_step5

built_tree_step6

built_tree_step7

built_tree_step8

built_tree_step9


图 12-8   构建二叉树的递归过程

每个递归函数内的前序遍历 preorder 和中序遍历 inorder 的划分结果如图 12-9 所示。

每个递归函数中的划分结果

图 12-9   每个递归函数中的划分结果

设树的节点数量为 n ,初始化每一个节点(执行一个递归函数 dfs() )使用 O(1) 时间。因此总体时间复杂度为 O(n)

哈希表存储 inorder 元素到索引的映射,空间复杂度为 O(n) 。最差情况下,即二叉树退化为链表时,递归深度达到 n ,使用 O(n) 的栈帧空间。因此总体空间复杂度为 O(n)

C++分治搜索策略
C++汉诺塔问题
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }