C++队列
「队列 queue」是一种遵循先入先出规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。
如图 5-4 所示,我们将队列的头部称为“队首”,尾部称为“队尾”,将把元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。
图 5-4 队列的先入先出规则
队列常用操作
队列的常见操作如表 5-2 所示。需要注意的是,不同编程语言的方法名称可能会有所不同。我们在此采用与栈相同的方法命名。
表 5-2 队列操作效率
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入队,即将元素添加至队尾 | |
pop() | 队首元素出队 | |
peek() | 访问队首元素 |
我们可以直接使用编程语言中现成的队列类。
queue.cpp
/* 初始化队列 */
queue<int> queue;
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
int front = queue.front();
/* 元素出队 */
queue.pop();
/* 获取队列的长度 */
int size = queue.size();
/* 判断队列是否为空 */
bool empty = queue.empty();
队列实现
为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列。
1. 基于链表的实现
如图 5-5 所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。
图 5-5 基于链表实现队列的入队出队操作
以下是用链表实现队列的代码。
linkedlist_queue.cpp
/* 基于链表实现的队列 */
class LinkedListQueue {
private:
ListNode *front, *rear; // 头节点 front ,尾节点 rear
int queSize;
public:
LinkedListQueue() {
front = nullptr;
rear = nullptr;
queSize = 0;
}
~LinkedListQueue() {
// 遍历链表删除节点,释放内存
freeMemoryLinkedList(front);
}
/* 获取队列的长度 */
int size() {
return queSize;
}
/* 判断队列是否为空 */
bool isEmpty() {
return queSize == 0;
}
/* 入队 */
void push(int num) {
// 尾节点后添加 num
ListNode *node = new ListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (front == nullptr) {
front = node;
rear = node;
}
// 如果队列不为空,则将该节点添加到尾节点后
else {
rear->next = node;
rear = node;
}
queSize++;
}
/* 出队 */
void pop() {
int num = peek();
// 删除头节点
ListNode *tmp = front;
front = front->next;
// 释放内存
delete tmp;
queSize--;
}
/* 访问队首元素 */
int peek() {
if (size() == 0)
throw out_of_range("队列为空");
return front->val;
}
/* 将链表转化为 Vector 并返回 */
vector<int> toVector() {
ListNode *node = front;
vector<int> res(size());
for (int i = 0; i < res.size(); i++) {
res[i] = node->val;
node = node->next;
}
return res;
}
};
2. 基于数组的实现
由于数组删除首元素的时间复杂度为 O(n) ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。
我们可以使用一个变量 front 指向队首元素的索引,并维护一个变量 size 用于记录队列长度。定义 rear = front + size ,这个公式计算出的 rear 指向队尾元素之后的下一个位置。
基于此设计,数组中包含元素的有效区间为 [front, rear - 1],各种操作的实现方法如图 5-6 所示。
- 入队操作:将输入元素赋值给 rear 索引处,并将 size 增加 1 。
- 出队操作:只需将 front 增加 1 ,并将 size 减少 1 。
可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 O(1) 。
图 5-6 基于数组实现队列的入队出队操作
你可能会发现一个问题:在不断进行入队和出队的过程中,front
和 rear
都在向右移动,当它们到达数组尾部时就无法继续移动了。为解决此问题,我们可以将数组视为首尾相接的“环形数组”。
对于环形数组,我们需要让 front
或 rear
在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示。
array_queue.cpp
/* 基于环形数组实现的队列 */
class ArrayQueue {
private:
int *nums; // 用于存储队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 队列长度
int queCapacity; // 队列容量
public:
ArrayQueue(int capacity) {
// 初始化数组
nums = new int[capacity];
queCapacity = capacity;
front = queSize = 0;
}
~ArrayQueue() {
delete[] nums;
}
/* 获取队列的容量 */
int capacity() {
return queCapacity;
}
/* 获取队列的长度 */
int size() {
return queSize;
}
/* 判断队列是否为空 */
bool isEmpty() {
return size() == 0;
}
/* 入队 */
void push(int num) {
if (queSize == queCapacity) {
cout << "队列已满" << endl;
return;
}
// 计算队尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % queCapacity;
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 出队 */
void pop() {
int num = peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % queCapacity;
queSize--;
}
/* 访问队首元素 */
int peek() {
if (isEmpty())
throw out_of_range("队列为空");
return nums[front];
}
/* 将数组转化为 Vector 并返回 */
vector<int> toVector() {
// 仅转换有效长度范围内的列表元素
vector<int> arr(queSize);
for (int i = 0, j = front; i < queSize; i++, j++) {
arr[i] = nums[j % queCapacity];
}
return arr;
}
};
以上实现的队列仍然具有局限性,即其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的同学可以尝试自行实现。
两种实现的对比结论与栈一致,在此不再赘述。
队列典型应用
- 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。
- 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等。队列在这些场景中可以有效地维护处理顺序。