C++二叉搜索树
图 7-19 在二叉搜索树中删除节点(度为 0 )如图 7-16 所示,「二叉搜索树 binary search tree」满足以下条件。
- 对于根节点,左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值。
- 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1. 。
图 7-16 二叉搜索树
二叉搜索树的操作
我们将二叉搜索树封装为一个类 ArrayBinaryTree ,并声明一个成员变量 root ,指向树的根节点。
1. 查找节点
给定目标节点值 num ,可以根据二叉搜索树的性质来查找。如图 7-17 所示,我们声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系。
- 若 cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right 。
- 若 cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left 。
- 若 cur.val = num ,说明找到目标节点,跳出循环并返回该节点。
图 7-17 二叉搜索树查找节点示例
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用
binary_search_tree.cpp
/* 查找节点 */
TreeNode *search(int num) {
TreeNode *cur = root;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 目标节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 目标节点在 cur 的左子树中
else if (cur->val > num)
cur = cur->left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
2. 插入节点
给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图 7-18 所示。
- 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶节点(遍历至 None )时跳出循环。
- 在该位置插入节点:初始化节点 num ,将该节点置于 None 的位置。
图 7-18 在二叉搜索树中插入节点
在代码实现中,需要注意以下两点。
- 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
- 为了实现插入节点,我们需要借助节点 pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以获取到其父节点,从而完成节点插入操作。
binary_search_tree.cpp
/* 插入节点 */
void insert(int num) {
// 若树为空,则初始化根节点
if (root == nullptr) {
root = new TreeNode(num);
return;
}
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到重复节点,直接返回
if (cur->val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 插入位置在 cur 的左子树中
else
cur = cur->left;
}
// 插入节点
TreeNode *node = new TreeNode(num);
if (pre->val < num)
pre->right = node;
else
pre->left = node;
}
与查找节点相同,插入节点使用
3. 删除节点
先在二叉树中查找到目标节点,再将其从二叉树中删除。
与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。
因此,我们需要根据目标节点的子节点数量,共分为 0、1 和 2 这三种情况,执行对应的删除节点操作。
如图 7-19 所示,当待删除节点的度为 0 时,表示该节点是叶节点,可以直接删除。
图 7-19 在二叉搜索树中删除节点(度为 0 )
如图 7-20 所示,当待删除节点的度为
图 7-20 在二叉搜索树中删除节点(度为 1 )
当待删除节点的度为 2 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左 < 根 < 右”的性质,因此这个节点可以是右子树的最小节点或左子树的最大节点。
假设我们选择右子树的最小节点(即中序遍历的下一个节点),则删除操作流程如图 7-21 所示。
- 找到待删除节点在“中序遍历序列”中的下一个节点,记为 tmp 。
- 将 tmp 的值覆盖待删除节点的值,并在树中递归删除节点 tmp 。
图 7-21 在二叉搜索树中删除节点(度为 2 )
删除节点操作同样使用
binary_search_tree.cpp
/* 删除节点 */
void remove(int num) {
// 若树为空,直接提前返回
if (root == nullptr)
return;
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 待删除节点在 cur 的左子树中
else
cur = cur->left;
}
// 若无待删除节点,则直接返回
if (cur == nullptr)
return;
// 子节点数量 = 0 or 1
if (cur->left == nullptr || cur->right == nullptr) {
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
// 删除节点 cur
if (cur != root) {
if (pre->left == cur)
pre->left = child;
else
pre->right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
// 释放内存
delete cur;
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != nullptr) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
remove(tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
}
}
4. 中序遍历有序
如图 7-22 所示,二叉树的中序遍历遵循“左 → 根 → 右”的遍历顺序,而二叉搜索树满足“左子节点 < 根节点 < 右子节点”的大小关系。
这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉搜索树的中序遍历序列是升序的。
利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 O(n) 时间,无须进行额外的排序操作,非常高效。
图 7-22 二叉搜索树的中序遍历序列
二叉搜索树的效率
给定一组数据,我们考虑使用数组或二叉搜索树存储。观察表 7-2 ,二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能表现。只有在高频添加、低频查找删除的数据适用场景下,数组比二叉搜索树的效率更高。
表 7-2 数组与搜索树的效率对比
无序数组 | 二叉搜索树 | |
---|---|---|
查找元素 | ||
插入元素 | ||
删除元素 |
在理想情况下,二叉搜索树是“平衡”的,这样就可以在 logn 轮循环内查找任意节点。
然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为图 7-23 所示的链表,这时各种操作的时间复杂度也会退化为 O(n) 。
图 7-23 二叉搜索树的退化
二叉搜索树常见应用
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
- 用于存储数据流,以保持其有序状态。