codecamp

C++二分查找插入点

图 10-4   二分查找插入点示例数据二分查找不仅可用于搜索目标元素,还具有许多变种问题,比如搜索目标元素的插入位置。

10.2.1   无重复元素的情况

Question

给定一个长度为 n 的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target 插入到数组 nums 中,并保持其有序性。若数组中已存在元素 ​target​ ,则插入到其左方。请返回插入后 target 在数组中的索引。

二分查找插入点示例数据

图 10-4   二分查找插入点示例数据

如果想要复用上节的二分查找代码,则需要回答以下两个问题。

问题一:当数组中包含 target 时,插入点的索引是否是该元素的索引?

题目要求将 target 插入到相等元素的左边,这意味着新插入的 target 替换原来 target 的位置。也就是说,当数组包含 target 时,插入点的索引就是该 target 的索引

问题二:当数组中不存在 target 时,插入点是哪个元素的索引?

进一步思考二分查找过程:当 nums[m] < target 时 i 移动,这意味着指针 i 在向大于等于 target 的元素靠近。同理,指针 j 始终在向小于等于 target 的元素靠近。

因此二分结束时一定有:i 指向首个大于 target 的元素,j 指向首个小于 target 的元素。易得当数组不包含 target 时,插入索引为 i 。

binary_search_insertion.cpp

/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(vector<int> &nums, int target) {
    int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
    while (i <= j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target) {
            i = m + 1; // target 在区间 [m+1, j] 中
        } else if (nums[m] > target) {
            j = m - 1; // target 在区间 [i, m-1] 中
        } else {
            return m; // 找到 target ,返回插入点 m
        }
    }
    // 未找到 target ,返回插入点 i
    return i;
}

存在重复元素的情况

Question

在上一题的基础上,规定数组可能包含重复元素,其余不变。

假设数组中存在多个 target ,则普通二分查找只能返回其中一个 target 的索引,而无法确定该元素的左边和右边还有多少 target。

题目要求将目标元素插入到最左边,所以我们需要查找数组中最左一个 target 的索引。初步考虑通过图 10-5 所示的步骤实现。

  1. 执行二分查找,得到任意一个 target 的索引,记为 k 。
  2. 从索引 k 开始,向左进行线性遍历,当找到最左边的 target 时返回。

线性查找重复元素的插入点

图 10-5   线性查找重复元素的插入点

此方法虽然可用,但其包含线性查找,因此时间复杂度为 O(n) 。当数组中存在很多重复的 target 时,该方法效率很低。

现考虑拓展二分查找代码。如图 10-6 所示,整体流程保持不变,每轮先计算中点索引 m ,再判断 target 和 nums[m] 大小关系,分为以下几种情况。

  • 当 nums[m] < target 或 nums[m] > target 时,说明还没有找到 target ,因此采用普通二分查找的缩小区间操作,从而使指针 i 和 j 向 target 靠近
  • 当 nums[m] == target 时,说明小于 target 的元素在区间 [i,m−1] 中,因此采用 j=m−1 来缩小区间,从而使指针 j 向小于 target 的元素靠近

循环完成后,i 指向最左边的 target ,j 指向首个小于 target 的元素,因此索引 i 就是插入点

二分查找重复元素的插入点的步骤

binary_search_insertion_step2

binary_search_insertion_step3

binary_search_insertion_step4

binary_search_insertion_step5

binary_search_insertion_step6

binary_search_insertion_step7

binary_search_insertion_step8

图 10-6   二分查找重复元素的插入点的步骤

观察以下代码,判断分支 nums[m] > target 和 nums[m] == target 的操作相同,因此两者可以合并。

即便如此,我们仍然可以将判断条件保持展开,因为其逻辑更加清晰、可读性更好。

binary_search_insertion.cpp

/* 二分查找插入点(存在重复元素) */
int binarySearchInsertion(vector<int> &nums, int target) {
    int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
    while (i <= j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target) {
            i = m + 1; // target 在区间 [m+1, j] 中
        } else if (nums[m] > target) {
            j = m - 1; // target 在区间 [i, m-1] 中
        } else {
            j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
        }
    }
    // 返回插入点 i
    return i;
}

Tip

本节的代码都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。

总的来看,二分查找无非就是给指针 i 和 j分别设定搜索目标,目标可能是一个具体的元素(例如 target ),也可能是一个元素范围(例如小于 target 的元素)。

在不断的循环二分中,指针 i 和 j 都逐渐逼近预先设定的目标。最终,它们或是成功找到答案,或是越过边界后停止。


C++二分查找
C++二分查找边界
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }