C++分数背包问题
Question
给定
图 15-3 分数背包问题的示例数据
分数背包和 0-1 背包整体上非常相似,状态包含当前物品
不同点在于,本题允许只选择物品的一部分。如图 15-4 所示,我们可以对物品任意地进行切分,并按照重量比例来计算物品价值。
- 对于物品
,它在单位重量下的价值为 ,简称为单位价值。 - 假设放入一部分物品
,重量为 ,则背包增加的价值为 。
图 15-4 物品在单位重量下的价值
1. 贪心策略确定
最大化背包内物品总价值,本质上是要最大化单位重量下的物品价值。由此便可推出图 15-5 所示的贪心策略。
- 将物品按照单位价值从高到低进行排序。
- 遍历所有物品,每轮贪心地选择单位价值最高的物品。
- 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。
图 15-5 分数背包的贪心策略
2. 代码实现
我们建立了一个物品类 Item
,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。
fractional_knapsack.cpp
/* 物品 */
class Item {
public:
int w; // 物品重量
int v; // 物品价值
Item(int w, int v) : w(w), v(v) {
}
};
/* 分数背包:贪心 */
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {
// 创建物品列表,包含两个属性:重量、价值
vector<Item> items;
for (int i = 0; i < wgt.size(); i++) {
items.push_back(Item(wgt[i], val[i]));
}
// 按照单位价值 item.v / item.w 从高到低进行排序
sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });
// 循环贪心选择
double res = 0;
for (auto &item : items) {
if (item.w <= cap) {
// 若剩余容量充足,则将当前物品整个装进背包
res += item.v;
cap -= item.w;
} else {
// 若剩余容量不足,则将当前物品的一部分装进背包
res += (double)item.v / item.w * cap;
// 已无剩余容量,因此跳出循环
break;
}
}
return res;
}
最差情况下,需要遍历整个物品列表,因此时间复杂度为
由于初始化了一个 Item
对象列表,因此空间复杂度为
3. 正确性证明
采用反证法。假设物品 res
,但该解中不包含物品
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 res
。这与 res
是最优解矛盾,说明最优解中必须包含物品
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。
如图 15-6 所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。
图 15-6 分数背包问题的几何表示