codecamp
C++二叉树

图 7-7   平衡二叉树图 7-6   完满二叉树图 7-5   完全二叉树「二叉树 binary tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含:值、左子节点引用、右子节点引用。

/* 二叉树节点结构体 */
struct TreeNode {
    int val;          // 节点值
    TreeNode *left;   // 左子节点指针
    TreeNode *right;  // 右子节点指针
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

每个节点都有两个引用(指针),分别指向「左子节点 left-child node」和「右子节点 right-child node」,该节点被称为这两个子节点的「父节点 parent node」。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树 left subtree」,同理可得「右子树 right subtree」。

在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树。如图 7-1 所示,如果将“节点 2”视为父节点,则其左子节点和右子节点分别是“节点 4”和“节点 5”,左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。

父节点、子节点、子树

图 7-1   父节点、子节点、子树

二叉树常见术语

二叉树的常用术语如图 7-2 所示。

  • 「根节点 root node」:位于二叉树顶层的节点,没有父节点。
  • 「叶节点 leaf node」:没有子节点的节点,其两个指针均指向 None 。
  • 「边 edge」:连接两个节点的线段,即节点引用(指针)。
  • 节点所在的「层 level」:从顶至底递增,根节点所在层为 1 。
  • 节点的「度 degree」:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
  • 二叉树的「高度 height」:从根节点到最远叶节点所经过的边的数量。
  • 节点的「深度 depth」:从根节点到该节点所经过的边的数量。
  • 节点的「高度 height」:从最远叶节点到该节点所经过的边的数量。

二叉树的常用术语

图 7-2   二叉树的常用术语

Tip

请注意,我们通常将“高度”和“深度”定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。

二叉树基本操作

1.   初始化二叉树

与链表类似,首先初始化节点,然后构建引用(指针)。

binary_tree.cpp

/* 初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

2.   插入与删除节点

与链表类似,在二叉树中插入与删除节点可以通过修改指针来实现。图 7-3 给出了一个示例。

在二叉树中插入与删除节点

图 7-3   在二叉树中插入与删除节点

binary_tree.cpp

/* 插入与删除节点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;

Note

需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除操作通常是由一套操作配合完成的,以实现有实际意义的操作。

常见二叉树类型

1.   完美二叉树

「完美二叉树 perfect binary tree」除了最底层外,其余所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 0 ,其余所有节点的度都为 2 ;若树高度为 ℎ ,则节点总数为 2ℎ+1−1 ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

完美二叉树

图 7-4   完美二叉树

2.   完全二叉树

如图 7-5 所示,「完全二叉树 complete binary tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。

完全二叉树

图 7-5   完全二叉树

3.   完满二叉树

如图 7-6 所示,「完满二叉树 full binary tree」除了叶节点之外,其余所有节点都有两个子节点。

完满二叉树

图 7-6   完满二叉树

4.   平衡二叉树

如图 7-7 所示,「平衡二叉树 balanced binary tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。

平衡二叉树

图 7-7   平衡二叉树

二叉树的退化

当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。

  • 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
  • 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 O(n) 。

二叉树的最佳与最差结构

图 7-8   二叉树的最佳与最差结构

如表 7-1 所示,在最佳和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。

表 7-1   二叉树的最佳与最差情况

完美二叉树链表
第 i 层的节点数量2i11
高度  树的叶节点数量21
高度  树的节点总数2+11+1
节点总数 n 树的高度log2(n+1)1n1


C++哈希表 小结
C++二叉树遍历
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }