codecamp

C++栈

「栈 stack」是一种遵循先入后出的逻辑的线性数据结构。

我们可以将栈类比为桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。我们将盘子替换为各种类型的元素(如整数、字符、对象等),就得到了栈数据结构。

如图 5-1 所示,我们把堆叠元素的顶部称为“栈顶”,底部称为“栈底”。将把元素添加到栈顶的操作叫做“入栈”,删除栈顶元素的操作叫做“出栈”。

栈的先入后出规则

图 5-1   栈的先入后出规则

栈常用操作

栈的常用操作如表 5-1 所示,具体的方法名需要根据所使用的编程语言来确定。在此,我们以常见的 push()、pop()、peek() 命名为例。

表 5-1   栈的操作效率

方法描述时间复杂度
push()元素入栈(添加至栈顶)O(1)
pop()栈顶元素出栈O(1)
peek()访问栈顶元素O(1)

通常情况下,我们可以直接使用编程语言内置的栈类。然而,某些语言可能没有专门提供栈类,这时我们可以将该语言的“数组”或“链表”视作栈来使用,并在程序逻辑上忽略与栈无关的操作。

stack.cpp

/* 初始化栈 */
stack<int> stack;

/* 元素入栈 */
stack.push(1);
stack.push(3);
stack.push(2);
stack.push(5);
stack.push(4);

/* 访问栈顶元素 */
int top = stack.top();

/* 元素出栈 */
stack.pop(); // 无返回值

/* 获取栈的长度 */
int size = stack.size();

/* 判断是否为空 */
bool empty = stack.empty();

栈的实现

为了深入了解栈的运行机制,我们来尝试自己实现一个栈类。

栈遵循先入后出的原则,因此我们只能在栈顶添加或删除元素。然而,数组和链表都可以在任意位置添加和删除元素,因此栈可以被视为一种受限制的数组或链表。换句话说,我们可以“屏蔽”数组或链表的部分无关操作,使其对外表现的逻辑符合栈的特性。

1.   基于链表的实现

使用链表来实现栈时,我们可以将链表的头节点视为栈顶,尾节点视为栈底。

如图 5-2 所示,对于入栈操作,我们只需将元素插入链表头部,这种节点插入方法被称为“头插法”。而对于出栈操作,只需将头节点从链表中删除即可。

基于链表实现栈的入栈出栈操作

linkedlist_stack_push

linkedlist_stack_pop

图 5-2   基于链表实现栈的入栈出栈操作

以下是基于链表实现栈的示例代码。

linkedlist_stack.cpp

/* 基于链表实现的栈 */
class LinkedListStack {
  private:
    ListNode *stackTop; // 将头节点作为栈顶
    int stkSize;        // 栈的长度

  public:
    LinkedListStack() {
        stackTop = nullptr;
        stkSize = 0;
    }

    ~LinkedListStack() {
        // 遍历链表删除节点,释放内存
        freeMemoryLinkedList(stackTop);
    }

    /* 获取栈的长度 */
    int size() {
        return stkSize;
    }

    /* 判断栈是否为空 */
    bool isEmpty() {
        return size() == 0;
    }

    /* 入栈 */
    void push(int num) {
        ListNode *node = new ListNode(num);
        node->next = stackTop;
        stackTop = node;
        stkSize++;
    }

    /* 出栈 */
    void pop() {
        int num = top();
        ListNode *tmp = stackTop;
        stackTop = stackTop->next;
        // 释放内存
        delete tmp;
        stkSize--;
    }

    /* 访问栈顶元素 */
    int top() {
        if (isEmpty())
            throw out_of_range("栈为空");
        return stackTop->val;
    }

    /* 将 List 转化为 Array 并返回 */
    vector<int> toVector() {
        ListNode *node = stackTop;
        vector<int> res(size());
        for (int i = res.size() - 1; i >= 0; i--) {
            res[i] = node->val;
            node = node->next;
        }
        return res;
    }
};

2.   基于数组的实现

使用数组实现栈时,我们可以将数组的尾部作为栈顶。如图 5-3 所示,入栈与出栈操作分别对应在数组尾部添加元素与删除元素,时间复杂度都为 O(1) 。

基于数组实现栈的入栈出栈操作

array_stack_push

array_stack_pop

图 5-3   基于数组实现栈的入栈出栈操作

由于入栈的元素可能会源源不断地增加,因此我们可以使用动态数组,这样就无须自行处理数组扩容问题。以下为示例代码。

array_stack.cpp

/* 基于数组实现的栈 */
class ArrayStack {
  private:
    vector<int> stack;

  public:
    /* 获取栈的长度 */
    int size() {
        return stack.size();
    }

    /* 判断栈是否为空 */
    bool isEmpty() {
        return stack.size() == 0;
    }

    /* 入栈 */
    void push(int num) {
        stack.push_back(num);
    }

    /* 出栈 */
    void pop() {
        int oldTop = top();
        stack.pop_back();
    }

    /* 访问栈顶元素 */
    int top() {
        if (isEmpty())
            throw out_of_range("栈为空");
        return stack.back();
    }

    /* 返回 Vector */
    vector<int> toVector() {
        return stack;
    }
};

两种实现对比

支持操作

两种实现都支持栈定义中的各项操作。数组实现额外支持随机访问,但这已超出了栈的定义范畴,因此一般不会用到。

时间效率

在基于数组的实现中,入栈和出栈操作都是在预先分配好的连续内存中进行,具有很好的缓存本地性,因此效率较高。然而,如果入栈时超出数组容量,会触发扩容机制,导致该次入栈操作的时间复杂度变为 O(n) 。

在链表实现中,链表的扩容非常灵活,不存在上述数组扩容时效率降低的问题。但是,入栈操作需要初始化节点对象并修改指针,因此效率相对较低。不过,如果入栈元素本身就是节点对象,那么可以省去初始化步骤,从而提高效率。

综上所述,当入栈与出栈操作的元素是基本数据类型时,例如 int 或 double ,我们可以得出以下结论。

  • 基于数组实现的栈在触发扩容时效率会降低,但由于扩容是低频操作,因此平均效率更高。
  • 基于链表实现的栈可以提供更加稳定的效率表现。

空间效率

在初始化列表时,系统会为列表分配“初始容量”,该容量可能超过实际需求。并且,扩容机制通常是按照特定倍率(例如 2 倍)进行扩容,扩容后的容量也可能超出实际需求。因此,基于数组实现的栈可能造成一定的空间浪费

然而,由于链表节点需要额外存储指针,因此链表节点占用的空间相对较大

综上,我们不能简单地确定哪种实现更加节省内存,需要针对具体情况进行分析。

栈典型应用

  • 浏览器中的后退与前进、软件中的撤销与反撤销。每当我们打开新的网页,浏览器就会将上一个网页执行入栈,这样我们就可以通过后退操作回到上一页面。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
  • 程序内存管理。每次调用函数时,系统都会在栈顶添加一个栈帧,用于记录函数的上下文信息。在递归函数中,向下递推阶段会不断执行入栈操作,而向上回溯阶段则会执行出栈操作。


C++数组与链表 小结
C++队列
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }