C++DP问题特性
在上节中,我们学习了动态规划是如何通过子问题分解来求解问题的。实际上,子问题分解是一种通用的算法思路,在分治、动态规划、回溯中的侧重点不同。
- 分治算法递归地将原问题划分为多个相互独立的子问题,直至最小子问题,并在回溯中合并子问题的解,最终得到原问题的解。
- 动态规划也对问题进行递归分解,但与分治算法的主要区别是,动态规划中的子问题是相互依赖的,在分解过程中会出现许多重叠子问题。
- 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。
实际上,动态规划常用来求解最优化问题,它们不仅包含重叠子问题,还具有另外两大特性:最优子结构、无后效性。
最优子结构
我们对爬楼梯问题稍作改动,使之更加适合展示最优子结构概念。
爬楼梯最小代价
给定一个楼梯,你每步可以上
如图 14-6 所示,若第
图 14-6 爬到第 3 阶的最小代价
设
这便可以引出最优子结构的含义:原问题的最优解是从子问题的最优解构建得来的。
本题显然具有最优子结构:我们从两个子问题最优解
那么,上节的爬楼梯题目有没有最优子结构呢?它的目标是求解方案数量,看似是一个计数问题,但如果换一种问法:“求解最大方案数量”。我们意外地发现,虽然题目修改前后是等价的,但最优子结构浮现出来了:第
根据状态转移方程,以及初始状态
min_cost_climbing_stairs_dp.cpp
/* 爬楼梯最小代价:动态规划 */
int minCostClimbingStairsDP(vector<int> &cost) {
int n = cost.size() - 1;
if (n == 1 || n == 2)
return cost[n];
// 初始化 dp 表,用于存储子问题的解
vector<int> dp(n + 1);
// 初始状态:预设最小子问题的解
dp[1] = cost[1];
dp[2] = cost[2];
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];
}
图 14-7 展示了以上代码的动态规划过程。
图 14-7 爬楼梯最小代价的动态规划过程
本题也可以进行空间优化,将一维压缩至零维,使得空间复杂度从
min_cost_climbing_stairs_dp.cpp
/* 爬楼梯最小代价:空间优化后的动态规划 */
int minCostClimbingStairsDPComp(vector<int> &cost) {
int n = cost.size() - 1;
if (n == 1 || n == 2)
return cost[n];
int a = cost[1], b = cost[2];
for (int i = 3; i <= n; i++) {
int tmp = b;
b = min(a, tmp) + cost[i];
a = tmp;
}
return b;
}
无后效性¶
无后效性是动态规划能够有效解决问题的重要特性之一,定义为:给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关。
以爬楼梯问题为例,给定状态
然而,如果我们向爬楼梯问题添加一个约束,情况就不一样了。
带约束爬楼梯
给定一个共有
例如图 14-8 ,爬上第
图 14-8 带约束爬到第 3 阶的方案数量
在该问题中,如果上一轮是跳
不难发现,此问题已不满足无后效性,状态转移方程
为此,我们需要扩展状态定义:状态
- 当
等于 ,即上一轮跳了 阶时,这一轮只能选择跳 阶。 - 当
等于 ,即上一轮跳了 阶时,这一轮可选择跳 阶或跳 阶。
如图 14-9 所示,在该定义下,
图 14-9 考虑约束下的递推关系
最终,返回
climbing_stairs_constraint_dp.cpp
/* 带约束爬楼梯:动态规划 */
int climbingStairsConstraintDP(int n) {
if (n == 1 || n == 2) {
return 1;
}
// 初始化 dp 表,用于存储子问题的解
vector<vector<int>> dp(n + 1, vector<int>(3, 0));
// 初始状态:预设最小子问题的解
dp[1][1] = 1;
dp[1][2] = 0;
dp[2][1] = 0;
dp[2][2] = 1;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i][1] = dp[i - 1][2];
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
}
return dp[n][1] + dp[n][2];
}
在上面的案例中,由于仅需多考虑前面一个状态,我们仍然可以通过扩展状态定义,使得问题重新满足无后效性。然而,某些问题具有非常严重的“有后效性”。
爬楼梯与障碍生成
给定一个共有
在这个问题中,下次跳跃依赖于过去所有的状态,因为每一次跳跃都会在更高的阶梯上设置障碍,并影响未来的跳跃。对于这类问题,动态规划往往难以解决。
实际上,许多复杂的组合优化问题(例如旅行商问题)都不满足无后效性。对于这类问题,我们通常会选择使用其他方法,例如启发式搜索、遗传算法、强化学习等,从而在有限时间内得到可用的局部最优解。