C++空间复杂度
「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。
算法相关空间
算法在运行过程中使用的内存空间主要包括以下几种。
- 输入空间:用于存储算法的输入数据。
- 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
- 输出空间:用于存储算法的输出数据。
一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。
暂存空间可以进一步划分为三个部分。
- 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
- 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
- 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。
在分析一段程序的空间复杂度时,我们通常统计暂存数据、栈帧空间和输出数据三部分。
图 2-15 算法使用的相关空间
/* 结构体 */
struct Node {
int val;
Node *next;
Node(int x) : val(x), next(nullptr) {}
};
/* 函数 */
int func() {
// 执行某些操作...
return 0;
}
int algorithm(int n) { // 输入数据
const int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node* node = new Node(0); // 暂存数据(对象)
int c = func(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
推算方法
空间复杂度的推算方法与时间复杂度大致相同,只需将统计对象从“操作数量”转为“使用空间大小”。
而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。
观察以下代码,最差空间复杂度中的“最差”有两层含义。
- 以最差输入数据为准:当 n<10 时,空间复杂度为 O(1) ;但当 n>10 时,初始化的数组 nums 占用 O(n) 空间;因此最差空间复杂度为 O(n) 。
- 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 O(1) 空间;当初始化数组 nums 时,程序占用 O(n) 空间;因此最差空间复杂度为 O(n) 。
void algorithm(int n) {
int a = 0; // O(1)
vector<int> b(10000); // O(1)
if (n > 10)
vector<int> nums(n); // O(n)
}
在递归函数中,需要注意统计栈帧空间。例如在以下代码中:
- 函数 loop() 在循环中调用了 n 次 function() ,每轮中的 function() 都返回并释放了栈帧空间,因此空间复杂度仍为 O(1) 。
- 递归函数 recur() 在运行过程中会同时存在 n 个未返回的 recur() ,从而占用 O(n) 的栈帧空间。
int func() {
// 执行某些操作
return 0;
}
/* 循环 O(1) */
void loop(int n) {
for (int i = 0; i < n; i++) {
func();
}
}
/* 递归 O(n) */
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
常见类型
设输入数据大小为 n ,图 2-16 展示了常见的空间复杂度类型(从低到高排列)。
图 2-16 常见的空间复杂度类型
1. 常数阶 O(1)
常数阶常见于数量与输入数据大小 n 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为 O(1) :
space_complexity.cpp
/* 函数 */
int func() {
// 执行某些操作
return 0;
}
/* 常数阶 */
void constant(int n) {
// 常量、变量、对象占用 O(1) 空间
const int a = 0;
int b = 0;
vector<int> nums(10000);
ListNode node(0);
// 循环中的变量占用 O(1) 空间
for (int i = 0; i < n; i++) {
int c = 0;
}
// 循环中的函数占用 O(1) 空间
for (int i = 0; i < n; i++) {
func();
}
}
线性阶 O(n)
线性阶常见于元素数量与 n 成正比的数组、链表、栈、队列等:
space_complexity.cpp
/* 线性阶 */
void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
vector<int> nums(n);
// 长度为 n 的列表占用 O(n) 空间
vector<ListNode> nodes;
for (int i = 0; i < n; i++) {
nodes.push_back(ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
unordered_map<int, string> map;
for (int i = 0; i < n; i++) {
map[i] = to_string(i);
}
}
如图 2-17 所示,此函数的递归深度为 linear_recur()
函数,使用
space_complexity.cpp
/* 线性阶(递归实现) */
void linearRecur(int n) {
cout << "递归 n = " << n << endl;
if (n == 1)
return;
linearRecur(n - 1);
}
图 2-17 递归函数产生的线性阶空间复杂度
平方阶 O(n²)
平方阶常见于矩阵和图,元素数量与 n 成平方关系:
space_complexity.cpp
/* 平方阶 */
void quadratic(int n) {
// 二维列表占用 O(n^2) 空间
vector<vector<int>> numMatrix;
for (int i = 0; i < n; i++) {
vector<int> tmp;
for (int j = 0; j < n; j++) {
tmp.push_back(0);
}
numMatrix.push_back(tmp);
}
}
如图 2-18 所示,该函数的递归深度为
space_complexity.cpp
/* 平方阶(递归实现) */
int quadraticRecur(int n) {
if (n <= 0)
return 0;
vector<int> nums(n);
cout << "递归 n = " << n << " 中的 nums 长度 = " << nums.size() << endl;
return quadraticRecur(n - 1);
}
图 2-18 递归函数产生的平方阶空间复杂度
指数阶 O(2^n)
指数阶常见于二叉树。观察图 2-19 ,高度为 n 的“满二叉树”的节点数量为 2n−1 ,占用 O(2^n) 空间:
space_complexity.cpp
/* 指数阶(建立满二叉树) */
TreeNode *buildTree(int n) {
if (n == 0)
return nullptr;
TreeNode *root = new TreeNode(0);
root->left = buildTree(n - 1);
root->right = buildTree(n - 1);
return root;
}
图 2-19 满二叉树产生的指数阶空间复杂度
对数阶 O(logn)
对数阶常见于分治算法。例如归并排序,输入长度为 n 的数组,每轮递归将数组从中点划分为两半,形成高度为 logn 的递归树,使用 O(logn) 栈帧空间。
再例如将数字转化为字符串,输入一个正整数 n ,它的位数为 log10 n +1 ,即对应字符串长度为 log10 n +1 ,因此空间复杂度为 O(log10 n +1)=O(log n) 。
权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。
降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。