codecamp

C++空间复杂度

「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

算法相关空间

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。

暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。

在分析一段程序的空间复杂度时,我们通常统计暂存数据、栈帧空间和输出数据三部分



图 2-15   算法使用的相关空间

/* 结构体 */
struct Node {
    int val;
    Node *next;
    Node(int x) : val(x), next(nullptr) {}
};

/* 函数 */
int func() {
    // 执行某些操作...
    return 0;
}

int algorithm(int n) {        // 输入数据
    const int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node* node = new Node(0); // 暂存数据(对象)
    int c = func();           // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}

推算方法

空间复杂度的推算方法与时间复杂度大致相同,只需将统计对象从“操作数量”转为“使用空间大小”。

而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。

观察以下代码,最差空间复杂度中的“最差”有两层含义。

  1. 以最差输入数据为准:当 n<10 时,空间复杂度为 O(1) ;但当 n>10 时,初始化的数组 nums 占用 O(n) 空间;因此最差空间复杂度为 O(n) 。
  2. 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 O(1) 空间;当初始化数组 nums 时,程序占用 O(n) 空间;因此最差空间复杂度为 O(n) 。
void algorithm(int n) {
    int a = 0;               // O(1)
    vector<int> b(10000);    // O(1)
    if (n > 10)
        vector<int> nums(n); // O(n)
}

在递归函数中,需要注意统计栈帧空间。例如在以下代码中:

  • 函数 loop() 在循环中调用了 n 次 function() ,每轮中的 function() 都返回并释放了栈帧空间,因此空间复杂度仍为 O(1) 。
  • 递归函数 recur() 在运行过程中会同时存在 n 个未返回的 recur() ,从而占用 O(n) 的栈帧空间。
int func() {
    // 执行某些操作
    return 0;
}
/* 循环 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        func();
    }
}
/* 递归 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}

常见类型

设输入数据大小为 n ,图 2-16 展示了常见的空间复杂度类型(从低到高排列)。

屏幕截图 2023-09-14 142619

常见的空间复杂度类型

图 2-16   常见的空间复杂度类型

1.   常数阶 O(1)

常数阶常见于数量与输入数据大小 n 无关的常量、变量、对象。

需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为 O(1) :

space_complexity.cpp

/* 函数 */
int func() {
    // 执行某些操作
    return 0;
}

/* 常数阶 */
void constant(int n) {
    // 常量、变量、对象占用 O(1) 空间
    const int a = 0;
    int b = 0;
    vector<int> nums(10000);
    ListNode node(0);
    // 循环中的变量占用 O(1) 空间
    for (int i = 0; i < n; i++) {
        int c = 0;
    }
    // 循环中的函数占用 O(1) 空间
    for (int i = 0; i < n; i++) {
        func();
    }
}

 线性阶 O(n)

线性阶常见于元素数量与 n 成正比的数组、链表、栈、队列等:

space_complexity.cpp

/* 线性阶 */
void linear(int n) {
    // 长度为 n 的数组占用 O(n) 空间
    vector<int> nums(n);
    // 长度为 n 的列表占用 O(n) 空间
    vector<ListNode> nodes;
    for (int i = 0; i < n; i++) {
        nodes.push_back(ListNode(i));
    }
    // 长度为 n 的哈希表占用 O(n) 空间
    unordered_map<int, string> map;
    for (int i = 0; i < n; i++) {
        map[i] = to_string(i);
    }
}

如图 2-17 所示,此函数的递归深度为 n ,即同时存在 n 个未返回的 linear_recur() 函数,使用 O(n) 大小的栈帧空间:

space_complexity.cpp

/* 线性阶(递归实现) */
void linearRecur(int n) {
    cout << "递归 n = " << n << endl;
    if (n == 1)
        return;
    linearRecur(n - 1);
}

递归函数产生的线性阶空间复杂度

图 2-17   递归函数产生的线性阶空间复杂度

平方阶 O(n²)

平方阶常见于矩阵和图,元素数量与 n 成平方关系:

space_complexity.cpp

/* 平方阶 */
void quadratic(int n) {
    // 二维列表占用 O(n^2) 空间
    vector<vector<int>> numMatrix;
    for (int i = 0; i < n; i++) {
        vector<int> tmp;
        for (int j = 0; j < n; j++) {
            tmp.push_back(0);
        }
        numMatrix.push_back(tmp);
    }
}

如图 2-18 所示,该函数的递归深度为 n ,在每个递归函数中都初始化了一个数组,长度分别为 nn121 ,平均长度为 n/2 ,因此总体占用 O(n2) 空间:

space_complexity.cpp

/* 平方阶(递归实现) */
int quadraticRecur(int n) {
    if (n <= 0)
        return 0;
    vector<int> nums(n);
    cout << "递归 n = " << n << " 中的 nums 长度 = " << nums.size() << endl;
    return quadraticRecur(n - 1);
}

递归函数产生的平方阶空间复杂度

图 2-18   递归函数产生的平方阶空间复杂度

指数阶 O(2^n)

指数阶常见于二叉树。观察图 2-19 ,高度为 n 的“满二叉树”的节点数量为 2n−1 ,占用 O(2^n) 空间:

space_complexity.cpp

/* 指数阶(建立满二叉树) */
TreeNode *buildTree(int n) {
    if (n == 0)
        return nullptr;
    TreeNode *root = new TreeNode(0);
    root->left = buildTree(n - 1);
    root->right = buildTree(n - 1);
    return root;
}

满二叉树产生的指数阶空间复杂度

图 2-19   满二叉树产生的指数阶空间复杂度

对数阶 O(log⁡n)

对数阶常见于分治算法。例如归并排序,输入长度为 n 的数组,每轮递归将数组从中点划分为两半,形成高度为 log⁡n 的递归树,使用 O(log⁡n) 栈帧空间。

再例如将数字转化为字符串,输入一个正整数 n ,它的位数为 log10 ⁡n +1 ,即对应字符串长度为 log10⁡ n +1 ,因此空间复杂度为 O(log10 n +1)=O(log⁡ n) 。

权衡时间与空间

理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。

降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。

选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。


C++时间复杂度
复杂度分析小结
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }