数据结构分类
常见的数据结构包括数组、链表、栈、队列、哈希表、树、堆、图,它们可以从“逻辑结构”和“物理结构”两个维度进行分类。
3.1.1 逻辑结构:线性与非线性
逻辑结构揭示了数据元素之间的逻辑关系。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。
如图 3-1 所示,逻辑结构可被分为“线性”和“非线性”两大类。线性结构比较直观,指数据在逻辑关系上呈线性排列;非线性结构则相反,呈非线性排列。
- 线性数据结构:数组、链表、栈、队列、哈希表。
- 非线性数据结构:树、堆、图、哈希表。
图 3-1 线性与非线性数据结构
非线性数据结构可以进一步被划分为树形结构和网状结构。
- 线性结构:数组、链表、队列、栈、哈希表,元素之间是一对一的顺序关系。
- 树形结构:树、堆、哈希表,元素之间是一对多的关系。
- 网状结构:图,元素之间是多对多的关系。
3.1.2 物理结构:连续与离散
在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。
在算法运行过程中,相关数据都存储在内存中。图 3-2 展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储一定大小的数据,在算法运行时,所有数据都被存储在这些单元格中。
系统通过内存地址来访问目标位置的数据。如图 3-2 所示,计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。
图 3-2 内存条、内存空间、内存地址
内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。
如图 3-3 所示,物理结构反映了数据在计算机内存中的存储方式,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。
图 3-3 连续空间存储与离散空间存储
值得说明的是,所有数据结构都是基于数组、链表或二者的组合实现的。例如,栈和队列既可以使用数组实现,也可以使用链表实现;而哈希表的实现可能同时包含数组和链表。
- 基于数组可实现:栈、队列、哈希表、树、堆、图、矩阵、张量(维度 ≥3 的数组)等。
- 基于链表可实现:栈、队列、哈希表、树、堆、图等。
基于数组实现的数据结构也被称为“静态数据结构”,这意味着此类数据结构在初始化后长度不可变。相对应地,基于链表实现的数据结构被称为“动态数据结构”,这类数据结构在初始化后,仍可以在程序运行过程中对其长度进行调整。
Tip
如果你感觉物理结构理解起来有困难,建议先阅读下一章“数组与链表”,然后再回顾本节内容。