codecamp

TensorFlow函数:tf.metrics.specificity_at_sensitivity

tf.metrics.specificity_at_sensitivity函数

tf.metrics.specificity_at_sensitivity(
    labels,
    predictions,
    sensitivity,
    weights=None,
    num_thresholds=200,
    metrics_collections=None,
    updates_collections=None,
    name=None
)

定义在:tensorflow/python/ops/metrics_impl.py.

计算给定sensitivity的specificity.

该specificity_at_sensitivity函数创建四个局部变量,true_positives,true_negatives,false_positives和false_negatives,它们用于计算在给定的sensitivity值的specificity.计算给定sensitivity值的阈值并用于评估相应的specificity.

为了估计数据流上的度量,该函数创建一个update_op操作来更新这些变量并返回specificity.update_op使用在predictions和labels的每个示例中发现的权重来递增true_positives,true_negatives,false_positives和false_negatives计数.

如果weights是None,则权重默认为1,使用权重0来屏蔽值.

有关特异性和敏感性的其他信息,请参阅以下内容:https://en.wikipedia.org/wiki/Sensitivity_and_specificity

参数:

  • labels:正确标记(ground truth),Tensor的维度必须匹配predictions,将被转换为bool.
  • predictions:任意形状的浮点Tensor,其值在该范围[0, 1]内.
  • sensitivity:范围[0, 1]内的标量值.
  • weights:可选的Tensor,其秩为0或与labels具有相同的秩,并且必须可广播到labels(即,所有维度必须为1或与相应的labels维度相同).
  • num_thresholds:用于匹配给定sensitivity的阈值数.
  • metrics_collections:specificity应添加到的集合的可选列表.
  • updates_collections:update_op应添加到的集合的可选列表.
  • name:可选的variable_scope名称.

返回:

  • specificity:表示给定specificity值的特异性的标量Tensor.
  • update_op:递增true_positives,true_negatives,false_positives和false_negatives变量的操作,并且适当其值匹配specificity.

可能引发的异常:

  • ValueError:如果predictions与labels具有不匹配的形状,如果weights不是None,其形状不匹配predictions,或者,如果sensitivity不处于0和1之间,或者如果任一metrics_collections或updates_collections不是一个列表或元组.
  • RuntimeError:如果启用了急切执行.
TensorFlow函数:tf.metrics.sparse_precision_at_k
TensorFlow函数:tf.metrics.true_negatives
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

TensorFlow 函数介绍

TensorFlow 函数模块:tf

TensorFlow的image模块

TensorFlow使用之tf.io

TensorFlow使用之tf.keras

TensorFlow函数教程:tf.keras.applications

TensorFlow函数教程:tf.keras.backend

TensorFlow使用之tf.metrics

TensorFlow使用之tf.nn

TensorFlow使用之tf.python_io

TensorFlow 功能函数

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }