codecamp

TensorFlow函数教程:tf.nn.depthwise_conv2d_native_backprop_input

tf.nn.depthwise_conv2d_native_backprop_input函数

tf.nn.depthwise_conv2d_native_backprop_input(
    input_sizes,
    filter,
    out_backprop,
    strides,
    padding,
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
)

定义在:tensorflow/python/ops/gen_nn_ops.py.

请参阅指南:神经网络>卷积运算

计算相对于输入的深度卷积的梯度.

参数:

  • input_sizes:一个int32类型的Tensor.一个整数向量,表示input的shape,它是基于data_format的.例如,如果data_format是'NHWC',则input是 4-D [batch, height, width, channels]张量.
  • filter:一个4-DTensor,必须是下列类型之一:half,bfloat16,float32,float64, shape为[filter_height, filter_width, in_channels, depthwise_multiplier].
  • out_backprop:一个4-DTensor,必须与filter具有相同类型,shape是基于data_format的.例如,如果data_format是'NHWC',那么out_backprop的shape是[batch, out_height, out_width, out_channels].梯度与卷积的输出相关.
  • strides:列表ints的列表,对于卷积输入的每个维度,滑动窗口的步幅.
  • paddingstring,可以是:"SAME", "VALID".要使用的填充算法的类型.
  • data_format:可选的string可以是:"NHWC", "NCHW",默认为"NHWC".指定输入和输出数据的数据格式.使用默认格式“NHWC”,数据按以下顺序存储:[batch, height, width, channels].或者,格式可以是“NCHW”,数据存储顺序为:[batch, channels, height, width].
  • dilationsints的可选列表,默认为[1, 1, 1, 1].长度为4的1-D张量.input每个维度的扩张系数.如果设置为k> 1,则该维度上的每个过滤器元素之间将有k-1个跳过的单元格.维度顺序由值data_format确定.批次和深度维度的扩张必须为1.
  • name:操作的名称(可选).

返回:

一个Tensor,filter具有相同的类型.

TensorFlow函数教程:tf.nn.depthwise_conv2d_native_backprop_filter
TensorFlow函数教程:tf.nn.dilation2d
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

TensorFlow 函数介绍

TensorFlow 函数模块:tf

TensorFlow的image模块

TensorFlow使用之tf.io

TensorFlow使用之tf.keras

TensorFlow函数教程:tf.keras.applications

TensorFlow函数教程:tf.keras.backend

TensorFlow使用之tf.metrics

TensorFlow使用之tf.nn

TensorFlow使用之tf.python_io

TensorFlow 功能函数

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }