codecamp

TensorFlow函数教程:tf.nn.quantized_max_pool

tf.nn.quantized_max_pool函数

tf.nn.quantized_max_pool(
    input,
    min_input,
    max_input,
    ksize,
    strides,
    padding,
    name=None
)

请参阅指南:神经网络>候选采样

为量化类型生成输入张量的最大池.

参数:

  • input:一个Tensor.必须是下列类型之一:qint8,quint8,qint32,qint16,quint16.是4D的(批 x 行 x 列 x 深度)Tensor到MaxReduce结束.
  • min_input:一个Tensor,类型为float32.最小量化输入值表示的浮点值.
  • max_input:一个Tensor,类型为float32.最大量化输入值表示的浮点值.
  • ksize:ints列表.输入张量的每个维度的窗口大小.长度必须为4才能匹配输入的维数.
  • strides:ints列表.输入张量的每个维度的滑动窗口的步幅.长度必须为4才能匹配输入的维数.
  • padding:string,可以是:"SAME", "VALID".要使用的填充算法的类型.
  • name:操作的名称(可选).

返回:

Tensor对象的元组(output,min_output,max_output).

  • output:一个Tensor.与input具有相同的类型.
  • min_output:一个Tensor,类型为float32.
  • max_output:一个Tensor,类型为float32.
TensorFlow函数教程:tf.nn.quantized_conv2d
TensorFlow函数教程:tf.nn.quantized_relu_x
温馨提示
下载编程狮App,免费阅读超1000+编程语言教程
取消
确定
目录

TensorFlow 函数介绍

TensorFlow 函数模块:tf

TensorFlow的image模块

TensorFlow使用之tf.io

TensorFlow使用之tf.keras

TensorFlow函数教程:tf.keras.applications

TensorFlow函数教程:tf.keras.backend

TensorFlow使用之tf.metrics

TensorFlow使用之tf.nn

TensorFlow使用之tf.python_io

TensorFlow 功能函数

关闭

MIP.setData({ 'pageTheme' : getCookie('pageTheme') || {'day':true, 'night':false}, 'pageFontSize' : getCookie('pageFontSize') || 20 }); MIP.watch('pageTheme', function(newValue){ setCookie('pageTheme', JSON.stringify(newValue)) }); MIP.watch('pageFontSize', function(newValue){ setCookie('pageFontSize', newValue) }); function setCookie(name, value){ var days = 1; var exp = new Date(); exp.setTime(exp.getTime() + days*24*60*60*1000); document.cookie = name + '=' + value + ';expires=' + exp.toUTCString(); } function getCookie(name){ var reg = new RegExp('(^| )' + name + '=([^;]*)(;|$)'); return document.cookie.match(reg) ? JSON.parse(document.cookie.match(reg)[2]) : null; }