统计 - 可靠性系数
通过测量相同的个体两次并计算两组测量的相关性而获得的测试或测量仪器的精度的测量。
可靠性系数由以下函数定义和给出:
式
$ {Reliability \\ Coefficient,\\ RC =(\\ frac {N} {(N-1)})\\ times(\\ frac {(Total \\ Variance \\ - Sum \\ of \\ Variance)} {
其中 -
$ {N} $ =任务数
例子
问题陈述:
经历了三个人(P)的承诺,他们被分配三个不同的任务(T)。 发现可靠性系数?
P0-T0 = 10 P1-T0 = 20 P0-T1 = 30 P1-T1 = 40 P0-T2 = 50 P1-T2 = 60
解决方案:
给定,学生数量(P)= 3任务数量(N)= 3.要查找,可靠性系数,请按照以下步骤操作:
步骤1
给我们一个机会,先计算人和他们的任务的平均分
The average score of Task (T0) = 10 + 20/2 = 15 The average score of Task (T1) = 30 + 40/2 = 35 The average score of Task (T2) = 50 + 60/2 = 55
第2步
接下来,计算方差:
Variance of P0-T0 and P1-T0: Variance = square (10-15) + square (20-15)/2 = 25 Variance of P0-T1 and P1-T1: Variance = square (30-35) + square (40-35)/2 = 25 Variance of P0-T2 and P1-T2: Variance = square (50-55) + square (50-55)/2 = 25
步骤3
现在,示出P sub和Sub Sub的每一个的方差,其中P sub,0, > 0 -T 1 和P 1 -T 1 ,P > 2和P sub 1 -T sub 2。 为了确定单个方差值,我们应该包括所有上述计算的变化值。
Total of Individual Variance = 25+25+25=75
步骤4
计算总变化
Variance= square ((P0-T0) - normal score of Person 0) = square (10-15) = 25 Variance= square ((P1-T0) - normal score of Person 0) = square (20-15) = 25 Variance= square ((P0-T1) - normal score of Person 1) = square (30-35) = 25 Variance= square ((P1-T1) - normal score of Person 1) = square (40-35) = 25 Variance= square ((P0-T2) - normal score of Person 2) = square (50-55) = 25 Variance= square ((P1-T2) - normal score of Person 2) = square (60-55) = 25
现在,包括每一个质量,并计算总的变化
Total Variance= 25+25+25+25+25+25 = 150
步骤5
最后,用下面提供的方程中的质量代替发现
${Reliability\ Coefficient,\ RC = (\frac{N}{(N-1)}) \times (\frac{(Total\ Variance\ - Sum\ of\ Variance)}{Total Variance}) \\[7pt]
= \frac{3}{(3-1)} \times \frac{(150-75)}{150} \\[7pt]
= 0.75 }$